量化脑不对称对正常和AD/MCI受试者年龄的估计

Leonid Teverovskiy, J. Becker, O. Lopez, Yanxi Liu
{"title":"量化脑不对称对正常和AD/MCI受试者年龄的估计","authors":"Leonid Teverovskiy, J. Becker, O. Lopez, Yanxi Liu","doi":"10.1109/ISBI.2008.4541295","DOIUrl":null,"url":null,"abstract":"We propose a quantified asymmetry based method for age estimation. Our method uses machine learning to discover automatically the most discriminative asymmetry feature set from different brain regions and image scales. Applying this regression model on a Tl MR brain image set of 246 healthy individuals (121 females; 125 males, 66 plusmn 7.5 years old), we achieve a mean absolute error of 5.4 years and a mean signed error of -0.2 years for age estimation on unseen MR images using the stringent leave-15%-out cross validation. Our results show significant changes in asymmetry with aging in the following regions: the posterior horns of the lateral ventricles, the amygdala, the ventral putamen with a nearby region of the anterior inferior caudate nucleus, the basal fore- brain, hyppocampus and parahyppocampal regions. We confirm the validity of the age estimation model using permutation test on 30 replicas of the original dataset with randomly permuted ages (with p-value < 0.001). Furthermore, we apply this model to a separate set of MR images containing normal, Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects. Our results reflect the relative severity of brain pathology between the three subject groups: mean signed age estimation error is 0.6 years for normal controls, 2.2 years for MCI patients, and 4.7 years for AD patients.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Quantified brain asymmetry for age estimation of normal and AD/MCI subjects\",\"authors\":\"Leonid Teverovskiy, J. Becker, O. Lopez, Yanxi Liu\",\"doi\":\"10.1109/ISBI.2008.4541295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a quantified asymmetry based method for age estimation. Our method uses machine learning to discover automatically the most discriminative asymmetry feature set from different brain regions and image scales. Applying this regression model on a Tl MR brain image set of 246 healthy individuals (121 females; 125 males, 66 plusmn 7.5 years old), we achieve a mean absolute error of 5.4 years and a mean signed error of -0.2 years for age estimation on unseen MR images using the stringent leave-15%-out cross validation. Our results show significant changes in asymmetry with aging in the following regions: the posterior horns of the lateral ventricles, the amygdala, the ventral putamen with a nearby region of the anterior inferior caudate nucleus, the basal fore- brain, hyppocampus and parahyppocampal regions. We confirm the validity of the age estimation model using permutation test on 30 replicas of the original dataset with randomly permuted ages (with p-value < 0.001). Furthermore, we apply this model to a separate set of MR images containing normal, Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects. Our results reflect the relative severity of brain pathology between the three subject groups: mean signed age estimation error is 0.6 years for normal controls, 2.2 years for MCI patients, and 4.7 years for AD patients.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们提出了一种量化的基于非对称性的年龄估计方法。我们的方法使用机器学习从不同的大脑区域和图像尺度中自动发现最具判别性的不对称特征集。将该回归模型应用于246例健康个体(121例女性;125名男性,66 + 7.5岁),我们使用严格的留15%交叉验证,对未见过的MR图像进行年龄估计,实现了平均绝对误差5.4岁和平均符号误差-0.2岁。结果显示,侧脑室后角、杏仁核、壳核腹侧及尾状核下前部附近区域、基底前脑、下丘脑和下丘脑旁区域的不对称性随着年龄的增长而发生显著变化。我们对原始数据集随机排列的30个副本(p值< 0.001)进行排列检验,证实了年龄估计模型的有效性。此外,我们将该模型应用于一组单独的MR图像,其中包括正常、阿尔茨海默病(AD)和轻度认知障碍(MCI)受试者。我们的结果反映了三组受试者之间脑病理的相对严重程度:正常对照组的平均签名年龄估计误差为0.6岁,MCI患者为2.2岁,AD患者为4.7岁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantified brain asymmetry for age estimation of normal and AD/MCI subjects
We propose a quantified asymmetry based method for age estimation. Our method uses machine learning to discover automatically the most discriminative asymmetry feature set from different brain regions and image scales. Applying this regression model on a Tl MR brain image set of 246 healthy individuals (121 females; 125 males, 66 plusmn 7.5 years old), we achieve a mean absolute error of 5.4 years and a mean signed error of -0.2 years for age estimation on unseen MR images using the stringent leave-15%-out cross validation. Our results show significant changes in asymmetry with aging in the following regions: the posterior horns of the lateral ventricles, the amygdala, the ventral putamen with a nearby region of the anterior inferior caudate nucleus, the basal fore- brain, hyppocampus and parahyppocampal regions. We confirm the validity of the age estimation model using permutation test on 30 replicas of the original dataset with randomly permuted ages (with p-value < 0.001). Furthermore, we apply this model to a separate set of MR images containing normal, Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects. Our results reflect the relative severity of brain pathology between the three subject groups: mean signed age estimation error is 0.6 years for normal controls, 2.2 years for MCI patients, and 4.7 years for AD patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1