基于机器学习分类器的分类技术实证研究

Bhawna Jyoti, A. Sharma
{"title":"基于机器学习分类器的分类技术实证研究","authors":"Bhawna Jyoti, A. Sharma","doi":"10.1109/PDGC50313.2020.9315768","DOIUrl":null,"url":null,"abstract":"In this transformational era, advancements in computational powers of machine learning applications, data classification task has put its roots from various engineering domains to an explosion of new strategies of data handling in the real-world applications scenario. Therefore, this study describes the implementation of eight classifiers (Logistic Regression, Support Vector Machines, Perceptron, Decision Tree, Random Forest, k-Nearest Neighbor, Gaussian Naïve Bayes and Linear Discriminant Analysis) on the iris dataset. Performance metrics like classification report and accuracy measures are evaluated on the iris dataset and it is observed experimentally that SVM classifier has given good accuracy measure of 99.1% over other classifiers.","PeriodicalId":347216,"journal":{"name":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Empirical Study of Classification Techniques by using Machine Learning Classifiers\",\"authors\":\"Bhawna Jyoti, A. Sharma\",\"doi\":\"10.1109/PDGC50313.2020.9315768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this transformational era, advancements in computational powers of machine learning applications, data classification task has put its roots from various engineering domains to an explosion of new strategies of data handling in the real-world applications scenario. Therefore, this study describes the implementation of eight classifiers (Logistic Regression, Support Vector Machines, Perceptron, Decision Tree, Random Forest, k-Nearest Neighbor, Gaussian Naïve Bayes and Linear Discriminant Analysis) on the iris dataset. Performance metrics like classification report and accuracy measures are evaluated on the iris dataset and it is observed experimentally that SVM classifier has given good accuracy measure of 99.1% over other classifiers.\",\"PeriodicalId\":347216,\"journal\":{\"name\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC50313.2020.9315768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Sixth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC50313.2020.9315768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这个转型的时代,机器学习应用的计算能力的进步,数据分类任务已经从各种工程领域的根源,到现实世界应用场景中数据处理的新策略的爆发。因此,本研究描述了八种分类器(逻辑回归、支持向量机、感知器、决策树、随机森林、k近邻、高斯Naïve贝叶斯和线性判别分析)在虹膜数据集上的实现。在虹膜数据集上评估了分类报告和准确性度量等性能指标,实验观察到SVM分类器比其他分类器给出了99.1%的良好准确率度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of Classification Techniques by using Machine Learning Classifiers
In this transformational era, advancements in computational powers of machine learning applications, data classification task has put its roots from various engineering domains to an explosion of new strategies of data handling in the real-world applications scenario. Therefore, this study describes the implementation of eight classifiers (Logistic Regression, Support Vector Machines, Perceptron, Decision Tree, Random Forest, k-Nearest Neighbor, Gaussian Naïve Bayes and Linear Discriminant Analysis) on the iris dataset. Performance metrics like classification report and accuracy measures are evaluated on the iris dataset and it is observed experimentally that SVM classifier has given good accuracy measure of 99.1% over other classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message Data Analysis of Various Terrorism Activities Using Big Data Approaches on Global Terrorism Database A Convolutional Neural Network Approach for The Diagnosis of Breast Cancer Color Fading: Variation of Colorimetric Parameters with Spectral Reflectance Automatic Rumour Detection Model on Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1