基于Lyapunov直接法的SMIB电力系统转子角稳定性分析

Cenk Andic, A. Ozturk, B. Turkay
{"title":"基于Lyapunov直接法的SMIB电力系统转子角稳定性分析","authors":"Cenk Andic, A. Ozturk, B. Turkay","doi":"10.1109/gpecom55404.2022.9815562","DOIUrl":null,"url":null,"abstract":"Rotor angle stability of a power system refers to the ability of the system to return to equilibrium points after significant disturbances like application to sudden increase in power input or removal of the load, line faults etc. This paper presents the importance of the rotor angle stability of power systems. The rotor angle stability is analyzed based on solving swing equation of a power system. The swing equation is a nonlinear equation. Therefore, a several non-linear methods (Runge-Kutta, Euler etc.) can be used to solve the swing equation. In this study, Lyapunov's direct method is proposed to solve the swing equation. The proposed method is tested on a single machine infinite bus test system. The maximum limit value at which the mechanical input power of the system can suddenly increase has been found. The obtained results show that Lyapunov's direct method successfully detects the operating point close to the instability region of the system.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotor Angle Stability Analysis by Using Lyapunov’s Direct Method of a SMIB Power System\",\"authors\":\"Cenk Andic, A. Ozturk, B. Turkay\",\"doi\":\"10.1109/gpecom55404.2022.9815562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rotor angle stability of a power system refers to the ability of the system to return to equilibrium points after significant disturbances like application to sudden increase in power input or removal of the load, line faults etc. This paper presents the importance of the rotor angle stability of power systems. The rotor angle stability is analyzed based on solving swing equation of a power system. The swing equation is a nonlinear equation. Therefore, a several non-linear methods (Runge-Kutta, Euler etc.) can be used to solve the swing equation. In this study, Lyapunov's direct method is proposed to solve the swing equation. The proposed method is tested on a single machine infinite bus test system. The maximum limit value at which the mechanical input power of the system can suddenly increase has been found. The obtained results show that Lyapunov's direct method successfully detects the operating point close to the instability region of the system.\",\"PeriodicalId\":441321,\"journal\":{\"name\":\"2022 4th Global Power, Energy and Communication Conference (GPECOM)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th Global Power, Energy and Communication Conference (GPECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/gpecom55404.2022.9815562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电力系统的转子角稳定性是指系统在受到重大干扰(如突然增加输入功率或取消负载、线路故障等)后恢复到平衡点的能力。论述了电力系统转子角稳定性的重要性。在求解电力系统摆振方程的基础上,对转子角稳定性进行了分析。摆动方程是一个非线性方程。因此,可以采用几种非线性方法(龙格-库塔法、欧拉法等)求解摆动方程。本文提出了求解摆动方程的Lyapunov直接法。在单机无限母线测试系统上对该方法进行了测试。找到了系统机械输入功率突然增大的最大限制值。计算结果表明,李亚普诺夫直接法能够成功地检测出靠近系统不稳定区域的工作点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rotor Angle Stability Analysis by Using Lyapunov’s Direct Method of a SMIB Power System
Rotor angle stability of a power system refers to the ability of the system to return to equilibrium points after significant disturbances like application to sudden increase in power input or removal of the load, line faults etc. This paper presents the importance of the rotor angle stability of power systems. The rotor angle stability is analyzed based on solving swing equation of a power system. The swing equation is a nonlinear equation. Therefore, a several non-linear methods (Runge-Kutta, Euler etc.) can be used to solve the swing equation. In this study, Lyapunov's direct method is proposed to solve the swing equation. The proposed method is tested on a single machine infinite bus test system. The maximum limit value at which the mechanical input power of the system can suddenly increase has been found. The obtained results show that Lyapunov's direct method successfully detects the operating point close to the instability region of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1