基于最大最小化的拉普拉斯鲁棒卡尔曼滤波

Hongwei Wang, Hongbin Li, Wei Zhang, Heping Wang
{"title":"基于最大最小化的拉普拉斯鲁棒卡尔曼滤波","authors":"Hongwei Wang, Hongbin Li, Wei Zhang, Heping Wang","doi":"10.23919/ICIF.2017.8009803","DOIUrl":null,"url":null,"abstract":"In this paper, we attack the estimation problem in Kalman filtering when the measurements are contaminated by outliers. We employ the Laplace distribution to model the underlying non-Gaussian measurement process. The maximum posterior estimation is solved by the majorization minimization (MM) approach. This yields an MM based robust filter, where the intractable ℓ1 norm problem is converted into an ℓ2 norm format. Furthermore, we implement the MM based robust filter in the Kalman filtering framework and develop a Laplace ℓ1 robust Kalman filter. The proposed algorithm is tested by numerical simulations. The robustness of our algorithm has been borne out when compared with other robust filters, especially in scenarios of heavy outliers.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Laplace ℓ1 robust Kalman filter based on majorization minimization\",\"authors\":\"Hongwei Wang, Hongbin Li, Wei Zhang, Heping Wang\",\"doi\":\"10.23919/ICIF.2017.8009803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attack the estimation problem in Kalman filtering when the measurements are contaminated by outliers. We employ the Laplace distribution to model the underlying non-Gaussian measurement process. The maximum posterior estimation is solved by the majorization minimization (MM) approach. This yields an MM based robust filter, where the intractable ℓ1 norm problem is converted into an ℓ2 norm format. Furthermore, we implement the MM based robust filter in the Kalman filtering framework and develop a Laplace ℓ1 robust Kalman filter. The proposed algorithm is tested by numerical simulations. The robustness of our algorithm has been borne out when compared with other robust filters, especially in scenarios of heavy outliers.\",\"PeriodicalId\":148407,\"journal\":{\"name\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 20th International Conference on Information Fusion (Fusion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICIF.2017.8009803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文研究了卡尔曼滤波中测量值被异常值污染时的估计问题。我们采用拉普拉斯分布来模拟潜在的非高斯测量过程。最大后验估计采用最大极小化(MM)方法求解。这产生了一个基于MM的鲁棒滤波器,其中棘手的1模问题被转换为2模格式。此外,我们在卡尔曼滤波框架中实现了基于MM的鲁棒滤波器,并开发了一个拉普拉斯1鲁棒卡尔曼滤波器。通过数值仿真验证了该算法的有效性。与其他鲁棒滤波器相比,我们的算法的鲁棒性得到了证实,特别是在有大量异常值的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laplace ℓ1 robust Kalman filter based on majorization minimization
In this paper, we attack the estimation problem in Kalman filtering when the measurements are contaminated by outliers. We employ the Laplace distribution to model the underlying non-Gaussian measurement process. The maximum posterior estimation is solved by the majorization minimization (MM) approach. This yields an MM based robust filter, where the intractable ℓ1 norm problem is converted into an ℓ2 norm format. Furthermore, we implement the MM based robust filter in the Kalman filtering framework and develop a Laplace ℓ1 robust Kalman filter. The proposed algorithm is tested by numerical simulations. The robustness of our algorithm has been borne out when compared with other robust filters, especially in scenarios of heavy outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep learning for situational understanding Event state based particle filter for ball event detection in volleyball game analysis Hybrid regularization for compressed sensing MRI: Exploiting shearlet transform and group-sparsity total variation A risk-based sensor management using random finite sets and POMDP Track a smoothly maneuvering target based on trajectory estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1