{"title":"一种适用于可再生能源的新型非隔离高增益DC-DC变换器","authors":"Naser Hassan Pour, K. Varesi","doi":"10.1109/PEDSTC.2019.8697239","DOIUrl":null,"url":null,"abstract":"This paper proposes a new high gain dc-dc converter. The proposed topology has simple control and structure. The input and output (load) current waveforms are continuous. The continuous character of input current of suggested converter candidates it as a suitable choice for application in renewable energy industry, where the Maximum Power Point Tracking (MPPT) can easily be achieved. Usually the transformerless converters suffer from low gain, but the suggested converter has extra high gain, in spite of its non-isolated and non-coupled inductor nature. The gain per number of elements in proposed topology is more than other similar topologies. Despite the high gain, the Normalized Voltage Stress (NVS) on switches/diodes of proposed topology is considerably low. In this paper, the proposed topology has been introduced and its operational modes have been explained. The steady state analysis have also been presented. To assess the proposed topology, it has been contrasted with similar novel topologies. Comparison results validate the advantages of proposed topology. The obtained simulation results (done in PSCAD/EMTDC) confirm the effective operation of proposed topology.","PeriodicalId":296229,"journal":{"name":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A New Non-Isolated High Gain DC-DC Converter Suitable for Renewable Energies\",\"authors\":\"Naser Hassan Pour, K. Varesi\",\"doi\":\"10.1109/PEDSTC.2019.8697239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new high gain dc-dc converter. The proposed topology has simple control and structure. The input and output (load) current waveforms are continuous. The continuous character of input current of suggested converter candidates it as a suitable choice for application in renewable energy industry, where the Maximum Power Point Tracking (MPPT) can easily be achieved. Usually the transformerless converters suffer from low gain, but the suggested converter has extra high gain, in spite of its non-isolated and non-coupled inductor nature. The gain per number of elements in proposed topology is more than other similar topologies. Despite the high gain, the Normalized Voltage Stress (NVS) on switches/diodes of proposed topology is considerably low. In this paper, the proposed topology has been introduced and its operational modes have been explained. The steady state analysis have also been presented. To assess the proposed topology, it has been contrasted with similar novel topologies. Comparison results validate the advantages of proposed topology. The obtained simulation results (done in PSCAD/EMTDC) confirm the effective operation of proposed topology.\",\"PeriodicalId\":296229,\"journal\":{\"name\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC.2019.8697239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Power Electronics, Drive Systems and Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2019.8697239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Non-Isolated High Gain DC-DC Converter Suitable for Renewable Energies
This paper proposes a new high gain dc-dc converter. The proposed topology has simple control and structure. The input and output (load) current waveforms are continuous. The continuous character of input current of suggested converter candidates it as a suitable choice for application in renewable energy industry, where the Maximum Power Point Tracking (MPPT) can easily be achieved. Usually the transformerless converters suffer from low gain, but the suggested converter has extra high gain, in spite of its non-isolated and non-coupled inductor nature. The gain per number of elements in proposed topology is more than other similar topologies. Despite the high gain, the Normalized Voltage Stress (NVS) on switches/diodes of proposed topology is considerably low. In this paper, the proposed topology has been introduced and its operational modes have been explained. The steady state analysis have also been presented. To assess the proposed topology, it has been contrasted with similar novel topologies. Comparison results validate the advantages of proposed topology. The obtained simulation results (done in PSCAD/EMTDC) confirm the effective operation of proposed topology.