嵌入式推理CNN算法的体系结构感知设计和实现:ALOHA项目

P. Meloni, Daniela Loi, Gianfranco Deriu, A. Pimentel, Dolly Sapra, Maura Pintor, B. Biggio, Oscar Ripolles, David Solans, Francesco Conti, L. Benini, T. Stefanov, S. Minakova, Bernhard Moser, Natalia Shepeleva, M. Masin, F. Palumbo, N. Fragoulis, Ilias Theodorakopoulos
{"title":"嵌入式推理CNN算法的体系结构感知设计和实现:ALOHA项目","authors":"P. Meloni, Daniela Loi, Gianfranco Deriu, A. Pimentel, Dolly Sapra, Maura Pintor, B. Biggio, Oscar Ripolles, David Solans, Francesco Conti, L. Benini, T. Stefanov, S. Minakova, Bernhard Moser, Natalia Shepeleva, M. Masin, F. Palumbo, N. Fragoulis, Ilias Theodorakopoulos","doi":"10.1109/ICM.2018.8704093","DOIUrl":null,"url":null,"abstract":"The use of Deep Learning (DL) algorithms is increasingly evolving in many application domains. Despite the rapid growing of algorithm size and complexity, performing DL inference at the edge is becoming a clear trend to cope with low latency, privacy and bandwidth constraints. Nevertheless, traditional implementation on low-energy computing nodes often requires experience-based manual intervention and trial-and-error iterations to get to a functional and effective solution. This work presents a computer-aided design (CAD) support for effective implementation of DL algorithms on embedded systems, aiming at automating different design steps and reducing cost. The proposed tool flow comprises capabilities to consider architecture-and hardware-related variables at very early stages of the development process, from pre-training hyperparameter optimization and algorithm configuration to deployment, and to adequately address security, power efficiency and adaptivity requirements. This paper also presents some preliminary results obtained by the first implementation of the optimization techniques supported by the tool flow.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project\",\"authors\":\"P. Meloni, Daniela Loi, Gianfranco Deriu, A. Pimentel, Dolly Sapra, Maura Pintor, B. Biggio, Oscar Ripolles, David Solans, Francesco Conti, L. Benini, T. Stefanov, S. Minakova, Bernhard Moser, Natalia Shepeleva, M. Masin, F. Palumbo, N. Fragoulis, Ilias Theodorakopoulos\",\"doi\":\"10.1109/ICM.2018.8704093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of Deep Learning (DL) algorithms is increasingly evolving in many application domains. Despite the rapid growing of algorithm size and complexity, performing DL inference at the edge is becoming a clear trend to cope with low latency, privacy and bandwidth constraints. Nevertheless, traditional implementation on low-energy computing nodes often requires experience-based manual intervention and trial-and-error iterations to get to a functional and effective solution. This work presents a computer-aided design (CAD) support for effective implementation of DL algorithms on embedded systems, aiming at automating different design steps and reducing cost. The proposed tool flow comprises capabilities to consider architecture-and hardware-related variables at very early stages of the development process, from pre-training hyperparameter optimization and algorithm configuration to deployment, and to adequately address security, power efficiency and adaptivity requirements. This paper also presents some preliminary results obtained by the first implementation of the optimization techniques supported by the tool flow.\",\"PeriodicalId\":305356,\"journal\":{\"name\":\"2018 30th International Conference on Microelectronics (ICM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2018.8704093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

深度学习(DL)算法的使用在许多应用领域都在不断发展。尽管算法规模和复杂性快速增长,但在边缘执行深度学习推理正在成为一个明显的趋势,以应对低延迟、隐私和带宽限制。然而,在低能耗计算节点上的传统实现通常需要基于经验的人工干预和试错迭代,以获得功能和有效的解决方案。本文提出了一种计算机辅助设计(CAD)支持,用于在嵌入式系统上有效地实现深度学习算法,旨在实现不同设计步骤的自动化并降低成本。建议的工具流包括在开发过程的早期阶段考虑与体系结构和硬件相关的变量的功能,从预训练超参数优化和算法配置到部署,并充分解决安全性、功率效率和适应性需求。本文还介绍了由工具流支持的优化技术的首次实施所获得的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project
The use of Deep Learning (DL) algorithms is increasingly evolving in many application domains. Despite the rapid growing of algorithm size and complexity, performing DL inference at the edge is becoming a clear trend to cope with low latency, privacy and bandwidth constraints. Nevertheless, traditional implementation on low-energy computing nodes often requires experience-based manual intervention and trial-and-error iterations to get to a functional and effective solution. This work presents a computer-aided design (CAD) support for effective implementation of DL algorithms on embedded systems, aiming at automating different design steps and reducing cost. The proposed tool flow comprises capabilities to consider architecture-and hardware-related variables at very early stages of the development process, from pre-training hyperparameter optimization and algorithm configuration to deployment, and to adequately address security, power efficiency and adaptivity requirements. This paper also presents some preliminary results obtained by the first implementation of the optimization techniques supported by the tool flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Deep Neural Networks Using FPGA On-body Investigation of Textile Antenna for Wearable RFID Applications Multi-Bit RRAM Transient Modelling and Analysis DEMO: Multi-Grain Adaptivity in Cyber-Physical Systems Compartive study of MPPT methods for PV systems : Case of Moroccan house
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1