不确定网络中小尺寸基元期望频率的边缘化高效解析计算

Takayasu Fushimi, Kazumi Saito, H. Motoda
{"title":"不确定网络中小尺寸基元期望频率的边缘化高效解析计算","authors":"Takayasu Fushimi, Kazumi Saito, H. Motoda","doi":"10.1145/3487351.3488275","DOIUrl":null,"url":null,"abstract":"Counting motifs in an uncertain graph for which each link is associated with a connection probability is computationally expensive when the graph is huge due to the extremely large number of possible worlds. Natural approach is to rely on sampling-based approximation methods, but this still needs many sample graphs for obtaining accurate results. We propose a novel method that analytically computes the expected frequency of motif without relying on expensive sampling. Marginalizing the probability of each possible world on a candidate motif can drastically reduce the number of possible worlds that need be considered when the size of motif is small. Experiments using real-world data confirm that the proposed method is effective and efficient. It is far better than the state-of-the-art sampling-based method. The accuracy is guaranteed and the running time is about 4 order of magnitude faster. It runs at a speed that does not depend on the connection probability.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient analytical computation of expected frequency of motifs of small size by marginalization in uncertain network\",\"authors\":\"Takayasu Fushimi, Kazumi Saito, H. Motoda\",\"doi\":\"10.1145/3487351.3488275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counting motifs in an uncertain graph for which each link is associated with a connection probability is computationally expensive when the graph is huge due to the extremely large number of possible worlds. Natural approach is to rely on sampling-based approximation methods, but this still needs many sample graphs for obtaining accurate results. We propose a novel method that analytically computes the expected frequency of motif without relying on expensive sampling. Marginalizing the probability of each possible world on a candidate motif can drastically reduce the number of possible worlds that need be considered when the size of motif is small. Experiments using real-world data confirm that the proposed method is effective and efficient. It is far better than the state-of-the-art sampling-based method. The accuracy is guaranteed and the running time is about 4 order of magnitude faster. It runs at a speed that does not depend on the connection probability.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在不确定图中,由于可能世界的数量非常多,当图非常大时,计算每个链接与连接概率相关联的图中的图案是非常昂贵的。自然的方法是依靠基于抽样的近似方法,但这仍然需要大量的样本图来获得准确的结果。我们提出了一种新的方法来解析计算基序的期望频率,而不依赖于昂贵的采样。边缘化候选基序上每个可能世界的概率可以大大减少在基序较小时需要考虑的可能世界的数量。实际数据实验验证了该方法的有效性和有效性。它比最先进的基于抽样的方法要好得多。精度得到保证,运行时间提高了约4个数量级。它的运行速度不依赖于连接概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient analytical computation of expected frequency of motifs of small size by marginalization in uncertain network
Counting motifs in an uncertain graph for which each link is associated with a connection probability is computationally expensive when the graph is huge due to the extremely large number of possible worlds. Natural approach is to rely on sampling-based approximation methods, but this still needs many sample graphs for obtaining accurate results. We propose a novel method that analytically computes the expected frequency of motif without relying on expensive sampling. Marginalizing the probability of each possible world on a candidate motif can drastically reduce the number of possible worlds that need be considered when the size of motif is small. Experiments using real-world data confirm that the proposed method is effective and efficient. It is far better than the state-of-the-art sampling-based method. The accuracy is guaranteed and the running time is about 4 order of magnitude faster. It runs at a speed that does not depend on the connection probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1