基于SURF和MSER局部特征提取改进特征袋的目标识别与分类

R. P, A. James
{"title":"基于SURF和MSER局部特征提取改进特征袋的目标识别与分类","authors":"R. P, A. James","doi":"10.1109/ICIICT1.2019.8741434","DOIUrl":null,"url":null,"abstract":"Object recognition and classification is a challenging task in computer vision because of the large variation in shape, size and other attributes within the same object class. Also we need to consider other challenges such as the presence of noise and haze, occlusion, low illumination conditions, blur and the cluttered backgrounds. Due to these facts, object recognition and classification gained attention in recent years. Many researchers have proposed different methods to address the problem of recognition. This paper proposes a method for object recognition and classification based improved bag of features using SURF(Speeded Up Robust Features) and MSER(Maximally Stable External Regions) local feature extraction. Combination of SURF and MSER feature extraction algorithm can improve the recognition efficiency and the classification accuracy can be improved by spatial pyramid matching. SURF and MSER extracts the local features of an image and generate a image histogram codebook. Spatial pyramid matching is applied to this histogram, which improves the accuracy of classification. The experiment is conducted on Caltech 101 and Caltech 256 dataset.","PeriodicalId":118897,"journal":{"name":"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Object Recognition and Classification Based on Improved Bag of Features using SURF AND MSER Local Feature Extraction\",\"authors\":\"R. P, A. James\",\"doi\":\"10.1109/ICIICT1.2019.8741434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object recognition and classification is a challenging task in computer vision because of the large variation in shape, size and other attributes within the same object class. Also we need to consider other challenges such as the presence of noise and haze, occlusion, low illumination conditions, blur and the cluttered backgrounds. Due to these facts, object recognition and classification gained attention in recent years. Many researchers have proposed different methods to address the problem of recognition. This paper proposes a method for object recognition and classification based improved bag of features using SURF(Speeded Up Robust Features) and MSER(Maximally Stable External Regions) local feature extraction. Combination of SURF and MSER feature extraction algorithm can improve the recognition efficiency and the classification accuracy can be improved by spatial pyramid matching. SURF and MSER extracts the local features of an image and generate a image histogram codebook. Spatial pyramid matching is applied to this histogram, which improves the accuracy of classification. The experiment is conducted on Caltech 101 and Caltech 256 dataset.\",\"PeriodicalId\":118897,\"journal\":{\"name\":\"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIICT1.2019.8741434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIICT1.2019.8741434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在计算机视觉中,物体识别和分类是一项具有挑战性的任务,因为同一类物体的形状、大小和其他属性变化很大。此外,我们还需要考虑其他挑战,如噪音和雾霾,遮挡,低照度条件,模糊和杂乱的背景的存在。由于这些原因,近年来,目标识别和分类受到了人们的关注。许多研究人员提出了不同的方法来解决识别问题。本文提出了一种基于加速鲁棒特征(SURF)和最大稳定外部区域(MSER)局部特征提取的改进特征袋的目标识别与分类方法。结合SURF和MSER特征提取算法可以提高识别效率,通过空间金字塔匹配可以提高分类精度。SURF和MSER提取图像的局部特征,生成图像直方图码本。对该直方图进行空间金字塔匹配,提高了分类精度。实验在Caltech 101和Caltech 256数据集上进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object Recognition and Classification Based on Improved Bag of Features using SURF AND MSER Local Feature Extraction
Object recognition and classification is a challenging task in computer vision because of the large variation in shape, size and other attributes within the same object class. Also we need to consider other challenges such as the presence of noise and haze, occlusion, low illumination conditions, blur and the cluttered backgrounds. Due to these facts, object recognition and classification gained attention in recent years. Many researchers have proposed different methods to address the problem of recognition. This paper proposes a method for object recognition and classification based improved bag of features using SURF(Speeded Up Robust Features) and MSER(Maximally Stable External Regions) local feature extraction. Combination of SURF and MSER feature extraction algorithm can improve the recognition efficiency and the classification accuracy can be improved by spatial pyramid matching. SURF and MSER extracts the local features of an image and generate a image histogram codebook. Spatial pyramid matching is applied to this histogram, which improves the accuracy of classification. The experiment is conducted on Caltech 101 and Caltech 256 dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design Of A Monitoring System For Waste Management Using IoT Survey on Private Blockchain Consensus Algorithms Object Recognition and Classification Based on Improved Bag of Features using SURF AND MSER Local Feature Extraction Prediction of Heart Disease Using Machine Learning Algorithms. Wavefront Compensation Technique for Terrestrial Line of Sight Free Space Optical Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1