在设计的多机电源系统中使用系列FACTS器件可提高传输能力

Ali Arzani, Mostafa Jazaeri, Y. Alinejad‐Beromi
{"title":"在设计的多机电源系统中使用系列FACTS器件可提高传输能力","authors":"Ali Arzani, Mostafa Jazaeri, Y. Alinejad‐Beromi","doi":"10.1109/UPEC.2008.4651434","DOIUrl":null,"url":null,"abstract":"Series FACTS devices have been successfully used for many years in order to enhance the stability and loadability of high voltage transmission networks. The principle is to compensate the inductive voltage drop in the line by an inserted capacitive voltage or in other words to reduce the effective reactance of the transmission line to enhance available transfer capability (ATC) in the network. ATC accurately reflects the physical realities of the transmission network, all system conditions, uses, and limits in a consistent manner. It depends on other parameters namely total transfer capability (TTC), capacity benefit margin (CBM), transmission reliability margin (TRM), and existing transmission commitments (ETC) that are described in this study thoroughly. This paper investigates the optimized use of FACTS devices and mainly thyristor controlled series capacitor (TCSC) to improve ATC and maximize total transfer capability generally defined as the maximum power transfer transaction between a specific power-seller and a power-buyer in a two area designed power system. The case study has been implemented on a 13-bus multi-machine test system using PowerWorld Simulator version 12.0. Furthermore, static linear analysis methods have been taken into account in calculating ATC and the impact on various factors has been defined clearly.","PeriodicalId":287461,"journal":{"name":"2008 43rd International Universities Power Engineering Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system\",\"authors\":\"Ali Arzani, Mostafa Jazaeri, Y. Alinejad‐Beromi\",\"doi\":\"10.1109/UPEC.2008.4651434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Series FACTS devices have been successfully used for many years in order to enhance the stability and loadability of high voltage transmission networks. The principle is to compensate the inductive voltage drop in the line by an inserted capacitive voltage or in other words to reduce the effective reactance of the transmission line to enhance available transfer capability (ATC) in the network. ATC accurately reflects the physical realities of the transmission network, all system conditions, uses, and limits in a consistent manner. It depends on other parameters namely total transfer capability (TTC), capacity benefit margin (CBM), transmission reliability margin (TRM), and existing transmission commitments (ETC) that are described in this study thoroughly. This paper investigates the optimized use of FACTS devices and mainly thyristor controlled series capacitor (TCSC) to improve ATC and maximize total transfer capability generally defined as the maximum power transfer transaction between a specific power-seller and a power-buyer in a two area designed power system. The case study has been implemented on a 13-bus multi-machine test system using PowerWorld Simulator version 12.0. Furthermore, static linear analysis methods have been taken into account in calculating ATC and the impact on various factors has been defined clearly.\",\"PeriodicalId\":287461,\"journal\":{\"name\":\"2008 43rd International Universities Power Engineering Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 43rd International Universities Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2008.4651434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 43rd International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2008.4651434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

为了提高高压输电网络的稳定性和负载性,FACTS系列设备已成功使用多年。其原理是通过插入电容电压来补偿线路中的感应电压降,即减小传输线的有效电抗,以提高网络中的可用传输能力(ATC)。ATC以一致的方式准确地反映了传输网络的物理现实、所有系统条件、使用和限制。它取决于其他参数,即总传输能力(TTC)、容量效益边际(CBM)、传输可靠性边际(TRM)和现有传输承诺(ETC),这些在本研究中得到了充分的描述。本文研究了优化使用FACTS器件和主要是晶闸管控制串联电容器(TCSC)来提高ATC和最大化总传输能力(通常定义为在两个区域设计的电力系统中特定电力卖方和电力买方之间的最大功率传输交易)。本案例研究已在一个13总线的多机测试系统上使用PowerWorld Simulator version 12.0实现。此外,在计算ATC时考虑了静态线性分析方法,明确了各因素对ATC的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Available transfer capability enhancement using series FACTS devices in a designed multi-machine power system
Series FACTS devices have been successfully used for many years in order to enhance the stability and loadability of high voltage transmission networks. The principle is to compensate the inductive voltage drop in the line by an inserted capacitive voltage or in other words to reduce the effective reactance of the transmission line to enhance available transfer capability (ATC) in the network. ATC accurately reflects the physical realities of the transmission network, all system conditions, uses, and limits in a consistent manner. It depends on other parameters namely total transfer capability (TTC), capacity benefit margin (CBM), transmission reliability margin (TRM), and existing transmission commitments (ETC) that are described in this study thoroughly. This paper investigates the optimized use of FACTS devices and mainly thyristor controlled series capacitor (TCSC) to improve ATC and maximize total transfer capability generally defined as the maximum power transfer transaction between a specific power-seller and a power-buyer in a two area designed power system. The case study has been implemented on a 13-bus multi-machine test system using PowerWorld Simulator version 12.0. Furthermore, static linear analysis methods have been taken into account in calculating ATC and the impact on various factors has been defined clearly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on model of power grid operation security cost in market environment Hybrid cascaded H- bridge multilevel inverter for fuel cell power conditioning systems Fault ride-through capability improvement of wind farms using doubly fed induction generator Protection, transient stability and fault ride-through issues in distribution networks with dispersed generation An architecture of spatial three dimension visualization information platform for urban power grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1