将迁移学习应用于飞机系统故障诊断的新方法

Lilin Jia, Cordelia Mattuvarkuzhali Ezhilarasu, I. Jennions
{"title":"将迁移学习应用于飞机系统故障诊断的新方法","authors":"Lilin Jia, Cordelia Mattuvarkuzhali Ezhilarasu, I. Jennions","doi":"10.36001/phme.2022.v7i1.3299","DOIUrl":null,"url":null,"abstract":"In recent years, transfer learning as a method that solves many issues limiting the real-world application of conventional machine learning methods has received dramatically increasing attention in the field of machine fault diagnosis. One major finding from an initial literature review shows that the majority of the existing research only focus on the transfer of diagnostic knowledge between various conditions of the same machine or different representation of similar machines. The primary goal of the current work is to seek a way to apply transfer learning to distinct domains, thereby expanding the boundary of transfer learning in the fault diagnosis field. In particular, attempts will be made to explore ways of transferring knowledge between diagnostic tasks of different aircraft systems. One promising method to help achieving this goal is transfer learning by structural analogy, since this method is capable of extracting high-level structural knowledge to apply transfer learning between seemingly unrelated domains, similar to the scenarios of transfer between different aircraft systems.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Way to Apply Transfer Learning to Aircraft System Fault Diagnosis\",\"authors\":\"Lilin Jia, Cordelia Mattuvarkuzhali Ezhilarasu, I. Jennions\",\"doi\":\"10.36001/phme.2022.v7i1.3299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, transfer learning as a method that solves many issues limiting the real-world application of conventional machine learning methods has received dramatically increasing attention in the field of machine fault diagnosis. One major finding from an initial literature review shows that the majority of the existing research only focus on the transfer of diagnostic knowledge between various conditions of the same machine or different representation of similar machines. The primary goal of the current work is to seek a way to apply transfer learning to distinct domains, thereby expanding the boundary of transfer learning in the fault diagnosis field. In particular, attempts will be made to explore ways of transferring knowledge between diagnostic tasks of different aircraft systems. One promising method to help achieving this goal is transfer learning by structural analogy, since this method is capable of extracting high-level structural knowledge to apply transfer learning between seemingly unrelated domains, similar to the scenarios of transfer between different aircraft systems.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,迁移学习作为一种解决传统机器学习方法在实际应用中存在的诸多问题的方法,在机器故障诊断领域受到了越来越多的关注。最初文献综述的一个主要发现表明,大多数现有研究只关注同一机器的不同条件或类似机器的不同表示之间的诊断知识转移。本工作的主要目标是寻求一种将迁移学习应用于不同领域的方法,从而扩大迁移学习在故障诊断领域的边界。特别是,将尝试探索在不同飞机系统的诊断任务之间传递知识的方法。通过结构类比进行迁移学习是实现这一目标的一种有希望的方法,因为这种方法能够提取高级结构知识,以便在看似不相关的领域之间应用迁移学习,类似于不同飞机系统之间的迁移场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Way to Apply Transfer Learning to Aircraft System Fault Diagnosis
In recent years, transfer learning as a method that solves many issues limiting the real-world application of conventional machine learning methods has received dramatically increasing attention in the field of machine fault diagnosis. One major finding from an initial literature review shows that the majority of the existing research only focus on the transfer of diagnostic knowledge between various conditions of the same machine or different representation of similar machines. The primary goal of the current work is to seek a way to apply transfer learning to distinct domains, thereby expanding the boundary of transfer learning in the fault diagnosis field. In particular, attempts will be made to explore ways of transferring knowledge between diagnostic tasks of different aircraft systems. One promising method to help achieving this goal is transfer learning by structural analogy, since this method is capable of extracting high-level structural knowledge to apply transfer learning between seemingly unrelated domains, similar to the scenarios of transfer between different aircraft systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Certainty Groups: A Practical Approach to Distinguish Confidence Levels in Neural Networks Domain Knowledge Informed Unsupervised Fault Detection for Rolling Element Bearings Novel Methodology for Health Assessment in Printed Circuit Boards On the Integration of Fundamental Knowledge about Degradation Processes into Data-Driven Diagnostics and Prognostics Using Theory-Guided Data Science Long Horizon Anomaly Prediction in Multivariate Time Series with Causal Autoencoders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1