卫星和碎片分类的掩蔽特征定位

Shubham Chaudhary, Parima Jain, V. Jakhetiya, Sharath Chandra Guntuku, B. Subudhi
{"title":"卫星和碎片分类的掩蔽特征定位","authors":"Shubham Chaudhary, Parima Jain, V. Jakhetiya, Sharath Chandra Guntuku, B. Subudhi","doi":"10.1109/ICIPC53495.2021.9620178","DOIUrl":null,"url":null,"abstract":"In this work, we propose a localization and masking-based satellite and debris classification technique. SPAce-craft Recognition leveraging Knowledge of space environment (SPARK) dataset consists of 120K images where both RGB and corresponding Depth images are available. However, the depth images are noisy and inaccurate and significantly affect the classification task performance. To address this issue, we first create mask images of the RGB images which are used as input to the Convolutional Neural Network (CNN) for efficient classification of different satellites and debris. The depth images are first de-noised and hole filled using a simple morphological opening operation. Then masked images are calculated using both RGB and processed depth images. This masking operation provides two advantages: 1. it removes noise and fills the holes in the depth images and 2. it highlights satellites and debris while suppressing other information which does not contribute towards the classification task. We use the pre-trained EfficientNet B4 architecture and fine-tuned it with an edition of Global average pooling (GAP) and three dense layers. Our results show that the inclusion of the masking operation significantly improves the overall classification performance, achieving 97.76% accuracy on the validation data.","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Localizing Features with Masking for Satellite and Debris Classification\",\"authors\":\"Shubham Chaudhary, Parima Jain, V. Jakhetiya, Sharath Chandra Guntuku, B. Subudhi\",\"doi\":\"10.1109/ICIPC53495.2021.9620178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a localization and masking-based satellite and debris classification technique. SPAce-craft Recognition leveraging Knowledge of space environment (SPARK) dataset consists of 120K images where both RGB and corresponding Depth images are available. However, the depth images are noisy and inaccurate and significantly affect the classification task performance. To address this issue, we first create mask images of the RGB images which are used as input to the Convolutional Neural Network (CNN) for efficient classification of different satellites and debris. The depth images are first de-noised and hole filled using a simple morphological opening operation. Then masked images are calculated using both RGB and processed depth images. This masking operation provides two advantages: 1. it removes noise and fills the holes in the depth images and 2. it highlights satellites and debris while suppressing other information which does not contribute towards the classification task. We use the pre-trained EfficientNet B4 architecture and fine-tuned it with an edition of Global average pooling (GAP) and three dense layers. Our results show that the inclusion of the masking operation significantly improves the overall classification performance, achieving 97.76% accuracy on the validation data.\",\"PeriodicalId\":246438,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing Challenges (ICIPC)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing Challenges (ICIPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIPC53495.2021.9620178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIPC53495.2021.9620178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种基于定位和掩蔽的卫星和碎片分类技术。利用空间环境知识的航天器识别(SPARK)数据集由120K图像组成,其中RGB图像和相应的深度图像都可用。然而,深度图像存在噪声和不准确性,严重影响分类任务的性能。为了解决这个问题,我们首先创建RGB图像的掩模图像,这些图像用作卷积神经网络(CNN)的输入,用于有效分类不同的卫星和碎片。深度图像首先去噪,并用简单的形态学打开操作填充孔。然后使用RGB和处理过的深度图像计算蒙版图像。这种屏蔽操作提供了两个优点:1。它去除噪声并填充深度图像和2中的空洞。它突出了卫星和碎片,同时压制了对分类任务没有帮助的其他信息。我们使用预先训练的EfficientNet B4架构,并使用Global average pooling (GAP)的一个版本和三个密集层对其进行微调。我们的研究结果表明,掩蔽操作的加入显著提高了整体分类性能,在验证数据上达到了97.76%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Localizing Features with Masking for Satellite and Debris Classification
In this work, we propose a localization and masking-based satellite and debris classification technique. SPAce-craft Recognition leveraging Knowledge of space environment (SPARK) dataset consists of 120K images where both RGB and corresponding Depth images are available. However, the depth images are noisy and inaccurate and significantly affect the classification task performance. To address this issue, we first create mask images of the RGB images which are used as input to the Convolutional Neural Network (CNN) for efficient classification of different satellites and debris. The depth images are first de-noised and hole filled using a simple morphological opening operation. Then masked images are calculated using both RGB and processed depth images. This masking operation provides two advantages: 1. it removes noise and fills the holes in the depth images and 2. it highlights satellites and debris while suppressing other information which does not contribute towards the classification task. We use the pre-trained EfficientNet B4 architecture and fine-tuned it with an edition of Global average pooling (GAP) and three dense layers. Our results show that the inclusion of the masking operation significantly improves the overall classification performance, achieving 97.76% accuracy on the validation data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Localizing Features with Masking for Satellite and Debris Classification Spark Challenge: Multimodal Classifier for Space Target Recognition Spacecraft Recognition Leveraging Knowledge of Space Environment: Simulator, Dataset, Competition Design and Analysis Special Session Organizers ICIPC 2021 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1