首页 > 最新文献

2021 IEEE International Conference on Image Processing Challenges (ICIPC)最新文献

英文 中文
Special Session Organizers 特别会议组织者
Pub Date : 2021-09-19 DOI: 10.1109/icipc53495.2021.9620191
{"title":"Special Session Organizers","authors":"","doi":"10.1109/icipc53495.2021.9620191","DOIUrl":"https://doi.org/10.1109/icipc53495.2021.9620191","url":null,"abstract":"","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124440620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ICIPC 2021 Cover Page ICIPC 2021封面
Pub Date : 2021-09-19 DOI: 10.1109/icipc53495.2021.9620188
{"title":"ICIPC 2021 Cover Page","authors":"","doi":"10.1109/icipc53495.2021.9620188","DOIUrl":"https://doi.org/10.1109/icipc53495.2021.9620188","url":null,"abstract":"","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126439671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localizing Features with Masking for Satellite and Debris Classification 卫星和碎片分类的掩蔽特征定位
Pub Date : 2021-09-19 DOI: 10.1109/ICIPC53495.2021.9620178
Shubham Chaudhary, Parima Jain, V. Jakhetiya, Sharath Chandra Guntuku, B. Subudhi
In this work, we propose a localization and masking-based satellite and debris classification technique. SPAce-craft Recognition leveraging Knowledge of space environment (SPARK) dataset consists of 120K images where both RGB and corresponding Depth images are available. However, the depth images are noisy and inaccurate and significantly affect the classification task performance. To address this issue, we first create mask images of the RGB images which are used as input to the Convolutional Neural Network (CNN) for efficient classification of different satellites and debris. The depth images are first de-noised and hole filled using a simple morphological opening operation. Then masked images are calculated using both RGB and processed depth images. This masking operation provides two advantages: 1. it removes noise and fills the holes in the depth images and 2. it highlights satellites and debris while suppressing other information which does not contribute towards the classification task. We use the pre-trained EfficientNet B4 architecture and fine-tuned it with an edition of Global average pooling (GAP) and three dense layers. Our results show that the inclusion of the masking operation significantly improves the overall classification performance, achieving 97.76% accuracy on the validation data.
在这项工作中,我们提出了一种基于定位和掩蔽的卫星和碎片分类技术。利用空间环境知识的航天器识别(SPARK)数据集由120K图像组成,其中RGB图像和相应的深度图像都可用。然而,深度图像存在噪声和不准确性,严重影响分类任务的性能。为了解决这个问题,我们首先创建RGB图像的掩模图像,这些图像用作卷积神经网络(CNN)的输入,用于有效分类不同的卫星和碎片。深度图像首先去噪,并用简单的形态学打开操作填充孔。然后使用RGB和处理过的深度图像计算蒙版图像。这种屏蔽操作提供了两个优点:1。它去除噪声并填充深度图像和2中的空洞。它突出了卫星和碎片,同时压制了对分类任务没有帮助的其他信息。我们使用预先训练的EfficientNet B4架构,并使用Global average pooling (GAP)的一个版本和三个密集层对其进行微调。我们的研究结果表明,掩蔽操作的加入显著提高了整体分类性能,在验证数据上达到了97.76%的准确率。
{"title":"Localizing Features with Masking for Satellite and Debris Classification","authors":"Shubham Chaudhary, Parima Jain, V. Jakhetiya, Sharath Chandra Guntuku, B. Subudhi","doi":"10.1109/ICIPC53495.2021.9620178","DOIUrl":"https://doi.org/10.1109/ICIPC53495.2021.9620178","url":null,"abstract":"In this work, we propose a localization and masking-based satellite and debris classification technique. SPAce-craft Recognition leveraging Knowledge of space environment (SPARK) dataset consists of 120K images where both RGB and corresponding Depth images are available. However, the depth images are noisy and inaccurate and significantly affect the classification task performance. To address this issue, we first create mask images of the RGB images which are used as input to the Convolutional Neural Network (CNN) for efficient classification of different satellites and debris. The depth images are first de-noised and hole filled using a simple morphological opening operation. Then masked images are calculated using both RGB and processed depth images. This masking operation provides two advantages: 1. it removes noise and fills the holes in the depth images and 2. it highlights satellites and debris while suppressing other information which does not contribute towards the classification task. We use the pre-trained EfficientNet B4 architecture and fine-tuned it with an edition of Global average pooling (GAP) and three dense layers. Our results show that the inclusion of the masking operation significantly improves the overall classification performance, achieving 97.76% accuracy on the validation data.","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121557702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
RGB-D Based Multimodal Convolutional Neural Networks for Spacecraft Recognition 基于RGB-D的多模态卷积神经网络航天器识别
Pub Date : 2021-09-19 DOI: 10.1109/ICIPC53495.2021.9620192
Nouar Aldahoul, H. A. Karim, Mhd Adel Momo
Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).
航天器识别是空间态势感知(SSA)的重要组成部分,特别是在主动碎片清除、在轨服务和卫星编队等应用中。实际空间图像识别的复杂性是由于遥感条件的多样性造成的,包括背景噪声、低信噪比、不同轨道场景和高对比度。本文解决了上述问题,提出了多模态卷积神经网络(cnn)用于航天器的检测和分类。提出的解决方案包括两个模型:1)将预训练好的ResNet50 CNN与支持向量机(SVM)分类器连接,对RGB图像进行分类。2)端到端深度图像分类CNN。在一个新的SPARK数据集上进行的实验是在真实的空间模拟环境下生成的,该数据集具有150k的RGB图像和150k的深度图像,包含11个类别。结果表明,所提出的解决方案在准确率(89%)、F1分数(87%)和性能度量(1.8)方面表现优异。
{"title":"RGB-D Based Multimodal Convolutional Neural Networks for Spacecraft Recognition","authors":"Nouar Aldahoul, H. A. Karim, Mhd Adel Momo","doi":"10.1109/ICIPC53495.2021.9620192","DOIUrl":"https://doi.org/10.1109/ICIPC53495.2021.9620192","url":null,"abstract":"Spacecraft recognition is a significant component of space situational awareness (SSA), especially for applications such as active debris removal, on-orbit servicing, and satellite formation. The complexity of recognition in actual space imagery is caused by a large diversity in sensing conditions, including background noise, low signal-to-noise ratio, different orbital scenarios, and high contrast. This paper addresses the previous problem and proposes multimodal convolutional neural networks (CNNs) for spacecraft detection and classification. The proposed solution includes two models: 1) a pre-trained ResNet50 CNN connected to a support vector machine (SVM) classifier for classification of RGB images. 2) an end-to-end CNN for classification of depth images. The experiments conducted on a novel SPARK dataset was generated under a realistic space simulation environment and has 150k of RGB images and 150k of depth images with 11 categories. The results show high performance of the proposed solution in terms of accuracy (89 %), F1 score (87 %), and Perf metric (1.8).","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127387922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Spacecraft Recognition Leveraging Knowledge of Space Environment: Simulator, Dataset, Competition Design and Analysis 利用空间环境知识的航天器识别:模拟器、数据集、竞赛设计与分析
Pub Date : 2021-09-19 DOI: 10.1109/ICIPC53495.2021.9620184
M. A. Musallam, Vincent Gaudillière, Enjie Ghorbel, Kassem Al Ismaeil, M. Perez, Michel Poucet, Djamila Aouada
SPARK represents the first edition of the SPAcecraft Recognition leveraging Knowledge of space environment competition organized by the Interdisciplinary Centre for Security, Reliability and Trust (SnT) in conjunction with the 2021 IEEE International Conference in Image Processing (ICIP 2021). By providing a unique synthetic dataset composed of 150k annotated multi-modal images, SPARK aims at encouraging researchers to develop innovative solutions for space target recognition and detection. This paper introduces the proposed dataset and provides a global analysis of the results obtained for the 17 submissions.
SPARK代表了由跨学科安全、可靠性和信任中心(SnT)与2021年IEEE图像处理国际会议(ICIP 2021)联合组织的利用空间环境知识的航天器识别竞赛的第一版。通过提供由150k张带注释的多模态图像组成的独特合成数据集,SPARK旨在鼓励研究人员开发空间目标识别和检测的创新解决方案。本文介绍了拟议的数据集,并对17份提交的结果进行了全面分析。
{"title":"Spacecraft Recognition Leveraging Knowledge of Space Environment: Simulator, Dataset, Competition Design and Analysis","authors":"M. A. Musallam, Vincent Gaudillière, Enjie Ghorbel, Kassem Al Ismaeil, M. Perez, Michel Poucet, Djamila Aouada","doi":"10.1109/ICIPC53495.2021.9620184","DOIUrl":"https://doi.org/10.1109/ICIPC53495.2021.9620184","url":null,"abstract":"SPARK represents the first edition of the SPAcecraft Recognition leveraging Knowledge of space environment competition organized by the Interdisciplinary Centre for Security, Reliability and Trust (SnT) in conjunction with the 2021 IEEE International Conference in Image Processing (ICIP 2021). By providing a unique synthetic dataset composed of 150k annotated multi-modal images, SPARK aims at encouraging researchers to develop innovative solutions for space target recognition and detection. This paper introduces the proposed dataset and provides a global analysis of the results obtained for the 17 submissions.","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123137243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Spark Challenge: Multimodal Classifier for Space Target Recognition 星火挑战:空间目标识别的多模态分类器
Pub Date : 2021-09-19 DOI: 10.1109/ICIPC53495.2021.9620183
I. Lahouli, M. Jarraya, G. Aversano
In this paper, we propose a multi-modal framework to tackle the SPARK Challenge by classifying satellites using RGB and depth images. Our framework is mainly based on Auto-Encoders (AE)s to embed the two modalities in a common latent space in order to exploit redundant and complementary information between the two types of data.
在本文中,我们提出了一个多模态框架,通过使用RGB和深度图像对卫星进行分类来解决SPARK挑战。我们的框架主要基于自动编码器(AE),将这两种模式嵌入到一个共同的潜在空间中,以利用两种类型数据之间的冗余和互补信息。
{"title":"Spark Challenge: Multimodal Classifier for Space Target Recognition","authors":"I. Lahouli, M. Jarraya, G. Aversano","doi":"10.1109/ICIPC53495.2021.9620183","DOIUrl":"https://doi.org/10.1109/ICIPC53495.2021.9620183","url":null,"abstract":"In this paper, we propose a multi-modal framework to tackle the SPARK Challenge by classifying satellites using RGB and depth images. Our framework is mainly based on Auto-Encoders (AE)s to embed the two modalities in a common latent space in order to exploit redundant and complementary information between the two types of data.","PeriodicalId":246438,"journal":{"name":"2021 IEEE International Conference on Image Processing Challenges (ICIPC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121977617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
2021 IEEE International Conference on Image Processing Challenges (ICIPC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1