深度图的稀疏表示,用于高效的变换编码

Gene Cheung, Akira Kubota, Antonio Ortega
{"title":"深度图的稀疏表示,用于高效的变换编码","authors":"Gene Cheung, Akira Kubota, Antonio Ortega","doi":"10.1109/PCS.2010.5702491","DOIUrl":null,"url":null,"abstract":"Compression of depth maps is important for “image plus depth” representation of multiview images, which enables synthesis of novel intermediate views via depth-image-based rendering (DIBR) at decoder. Previous depth map coding schemes exploit unique depth characteristics to compactly and faithfully reproduce the original signal. In contrast, given that depth maps are not directly viewed but are only used for view synthesis, in this paper we manipulate depth values themselves, without causing severe synthesized view distortion, in order to maximize sparsity in the transform domain for compression gain. We formulate the sparsity maximization problem as an l0-norm optimization. Given l0-norm optimization is hard in general, we first find a sparse representation by iteratively solving a weighted l1 minimization via linear programming (LP). We then design a heuristic to push resulting LP solution away from constraint boundaries to avoid quantization errors. Using JPEG as an example transform codec, we show that our approach gained up to 2.5dB in rate-distortion performance for the interpolated view.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Sparse representation of depth maps for efficient transform coding\",\"authors\":\"Gene Cheung, Akira Kubota, Antonio Ortega\",\"doi\":\"10.1109/PCS.2010.5702491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compression of depth maps is important for “image plus depth” representation of multiview images, which enables synthesis of novel intermediate views via depth-image-based rendering (DIBR) at decoder. Previous depth map coding schemes exploit unique depth characteristics to compactly and faithfully reproduce the original signal. In contrast, given that depth maps are not directly viewed but are only used for view synthesis, in this paper we manipulate depth values themselves, without causing severe synthesized view distortion, in order to maximize sparsity in the transform domain for compression gain. We formulate the sparsity maximization problem as an l0-norm optimization. Given l0-norm optimization is hard in general, we first find a sparse representation by iteratively solving a weighted l1 minimization via linear programming (LP). We then design a heuristic to push resulting LP solution away from constraint boundaries to avoid quantization errors. Using JPEG as an example transform codec, we show that our approach gained up to 2.5dB in rate-distortion performance for the interpolated view.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

深度图的压缩对于多视图图像的“图像加深度”表示非常重要,它可以在解码器上通过基于深度图像的渲染(DIBR)合成新的中间视图。以往的深度图编码方案利用独特的深度特性来紧凑、真实地再现原始信号。相比之下,考虑到深度图不是直接查看的,而是仅用于视图合成,在本文中,我们操纵深度值本身,而不会引起严重的合成视图失真,以最大化变换域中的稀疏性以获得压缩增益。我们将稀疏性最大化问题表述为一个10范数优化问题。考虑到10范数优化通常是困难的,我们首先通过线性规划(LP)迭代求解加权l1最小化来找到一个稀疏表示。然后,我们设计了一个启发式算法,将得到的LP解推离约束边界,以避免量化误差。使用JPEG作为转换编解码器的示例,我们表明我们的方法在插值视图中获得了高达2.5dB的率失真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse representation of depth maps for efficient transform coding
Compression of depth maps is important for “image plus depth” representation of multiview images, which enables synthesis of novel intermediate views via depth-image-based rendering (DIBR) at decoder. Previous depth map coding schemes exploit unique depth characteristics to compactly and faithfully reproduce the original signal. In contrast, given that depth maps are not directly viewed but are only used for view synthesis, in this paper we manipulate depth values themselves, without causing severe synthesized view distortion, in order to maximize sparsity in the transform domain for compression gain. We formulate the sparsity maximization problem as an l0-norm optimization. Given l0-norm optimization is hard in general, we first find a sparse representation by iteratively solving a weighted l1 minimization via linear programming (LP). We then design a heuristic to push resulting LP solution away from constraint boundaries to avoid quantization errors. Using JPEG as an example transform codec, we show that our approach gained up to 2.5dB in rate-distortion performance for the interpolated view.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Focus on visual rendering quality through content-based depth map coding Image quality assessment based on local orientation distributions Intra picture coding with planar representations Real-time Free Viewpoint Television for embedded systems A subjective image quality metric for bit-inversion-based watermarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1