使用法学硕士对课程讨论板问题进行分类

Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang
{"title":"使用法学硕士对课程讨论板问题进行分类","authors":"Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang","doi":"10.1145/3587103.3594202","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.","PeriodicalId":366365,"journal":{"name":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Course Discussion Board Questions using LLMs\",\"authors\":\"Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang\",\"doi\":\"10.1145/3587103.3594202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.\",\"PeriodicalId\":366365,\"journal\":{\"name\":\"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587103.3594202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587103.3594202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)可以用来回答课程讨论板上的学生问题,但是llm回答他们无法解决的问题是有风险的。我们提出并评估了一个基于法学硕士的系统,该系统将学生的问题分为四种类型:概念性、作业性、逻辑性和不可回答性。然后,我们使用特定于类型的提示符提示LLM。使用GPT-3,我们在四个类别中实现了81%的分类准确率。此外,我们对不可回答问题的分类准确率达到93%。这表明我们的制度有效地忽略了它无法解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classifying Course Discussion Board Questions using LLMs
Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward AI-infused Game Design Activities for Rural Middle Grades Students Translate Together: Managed Translation and Peer-Review Automatic Feedback During Coding Exams: Curse or Blessing? Technocamps: Highlighting 20 Years of Transforming Digital Education in Wales Understanding Computer Science Teacher Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1