从维基百科中提取地理知识

D. Benhaddouche, Mohamed Tekkouk, Abdelghani Chernnouf Youcef
{"title":"从维基百科中提取地理知识","authors":"D. Benhaddouche, Mohamed Tekkouk, Abdelghani Chernnouf Youcef","doi":"10.1145/3330089.3330128","DOIUrl":null,"url":null,"abstract":"GIS is becoming a necessity in a wide variety of application domains and the extraction of such geographic information has taken an important part in the computer science field. This thesis has the objective of extracting geographic data from Wikipedia to make it easier for users to obtain the information they want. One problematic aspect is the large volume XML file processing, we try to use text mining and machine learning techniques to solve this problem. In this work, we present and evaluate an approach to extract geographic data from Wikipedia from a very large XML file and create a geographic databae. Our technique is to extract infoboxes from geographic articles using the supervised machine learning (SVM) technique. We create after that tables containing geographic data (name, longitude, latitude ... etc) and we make the joins between different tables that will help us to structure our result.","PeriodicalId":251275,"journal":{"name":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting Geographic Knowledge from Wikipedia\",\"authors\":\"D. Benhaddouche, Mohamed Tekkouk, Abdelghani Chernnouf Youcef\",\"doi\":\"10.1145/3330089.3330128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GIS is becoming a necessity in a wide variety of application domains and the extraction of such geographic information has taken an important part in the computer science field. This thesis has the objective of extracting geographic data from Wikipedia to make it easier for users to obtain the information they want. One problematic aspect is the large volume XML file processing, we try to use text mining and machine learning techniques to solve this problem. In this work, we present and evaluate an approach to extract geographic data from Wikipedia from a very large XML file and create a geographic databae. Our technique is to extract infoboxes from geographic articles using the supervised machine learning (SVM) technique. We create after that tables containing geographic data (name, longitude, latitude ... etc) and we make the joins between different tables that will help us to structure our result.\",\"PeriodicalId\":251275,\"journal\":{\"name\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th International Conference on Software Engineering and New Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3330089.3330128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Software Engineering and New Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330089.3330128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地理信息系统已成为各种应用领域的必需品,地理信息的提取已成为计算机科学领域的重要组成部分。本文的目的是从维基百科中提取地理数据,使用户更容易获得他们想要的信息。其中一个问题是大量XML文件的处理,我们尝试使用文本挖掘和机器学习技术来解决这个问题。在这项工作中,我们提出并评估了一种从一个非常大的XML文件中提取维基百科地理数据并创建地理数据库的方法。我们的技术是使用监督机器学习(SVM)技术从地理文章中提取信息框。之后,我们创建包含地理数据(姓名、经度、纬度……)的表。等),我们在不同的表之间建立连接,这将帮助我们构建我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extracting Geographic Knowledge from Wikipedia
GIS is becoming a necessity in a wide variety of application domains and the extraction of such geographic information has taken an important part in the computer science field. This thesis has the objective of extracting geographic data from Wikipedia to make it easier for users to obtain the information they want. One problematic aspect is the large volume XML file processing, we try to use text mining and machine learning techniques to solve this problem. In this work, we present and evaluate an approach to extract geographic data from Wikipedia from a very large XML file and create a geographic databae. Our technique is to extract infoboxes from geographic articles using the supervised machine learning (SVM) technique. We create after that tables containing geographic data (name, longitude, latitude ... etc) and we make the joins between different tables that will help us to structure our result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud technology based Information System for testing and certification centers Best Road Based Immersive Visualization Framework for patient in emergency: The ISRM application A New System For Audio Mining: Using of MDT+ for automatic prediction of new singers success Normalization of XML Schema Definitions Local Binary Patterns for Gender Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1