{"title":"石墨烯基纳米器件线性阵列的单转移制备方法","authors":"Hengkai Zhang, Xin Tang, Guangfu Wu, K. Lai","doi":"10.1109/NANOMED.2015.7492509","DOIUrl":null,"url":null,"abstract":"In this paper, we report a novel fabrication method to make linear array of graphene based nanodevices on a single chip by one single-transfer process. The method enables transferring of a number of graphene flakes on a substrate with predefined electrodes. This method enables efficient fabrication of multiple graphene based nanodevices on single chip. Chemical vapor deposition grown graphene was patterned into M × N array, and the array can be transferred to a single chip by the transfer process. The electrical measurement results show that the electrical characteristics of the nanodevices are highly consistent and stable. Furthermore, the single-transfer method can be applied in fabricating various kinds of nanodevices. The method would have great potential to realize large-scale production of graphene based biosensors.","PeriodicalId":187049,"journal":{"name":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-transfer method for fabrication of linear array of graphene-based nanodevices\",\"authors\":\"Hengkai Zhang, Xin Tang, Guangfu Wu, K. Lai\",\"doi\":\"10.1109/NANOMED.2015.7492509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report a novel fabrication method to make linear array of graphene based nanodevices on a single chip by one single-transfer process. The method enables transferring of a number of graphene flakes on a substrate with predefined electrodes. This method enables efficient fabrication of multiple graphene based nanodevices on single chip. Chemical vapor deposition grown graphene was patterned into M × N array, and the array can be transferred to a single chip by the transfer process. The electrical measurement results show that the electrical characteristics of the nanodevices are highly consistent and stable. Furthermore, the single-transfer method can be applied in fabricating various kinds of nanodevices. The method would have great potential to realize large-scale production of graphene based biosensors.\",\"PeriodicalId\":187049,\"journal\":{\"name\":\"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOMED.2015.7492509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 9th IEEE International Conference on Nano/Molecular Medicine & Engineering (NANOMED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2015.7492509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-transfer method for fabrication of linear array of graphene-based nanodevices
In this paper, we report a novel fabrication method to make linear array of graphene based nanodevices on a single chip by one single-transfer process. The method enables transferring of a number of graphene flakes on a substrate with predefined electrodes. This method enables efficient fabrication of multiple graphene based nanodevices on single chip. Chemical vapor deposition grown graphene was patterned into M × N array, and the array can be transferred to a single chip by the transfer process. The electrical measurement results show that the electrical characteristics of the nanodevices are highly consistent and stable. Furthermore, the single-transfer method can be applied in fabricating various kinds of nanodevices. The method would have great potential to realize large-scale production of graphene based biosensors.