通过值预测增强的指令预执行减少寄存器文件大小

Yusuke Tanaka, H. Ando
{"title":"通过值预测增强的指令预执行减少寄存器文件大小","authors":"Yusuke Tanaka, H. Ando","doi":"10.1109/ICCD.2009.5413149","DOIUrl":null,"url":null,"abstract":"Two-step physical register deallocation (TSD) is an architectural scheme, which enhances memory-level parallelism (MLP) by pre-executing instructions. Ideally, the TSD allows MLP under the unlimited number of physical registers to be exploited, and consequently only a small register file is necessary for MLP. In practice, however, the amount of MLP exploitable is limited, because there are cases where pre-execution is not performed or timing of pre-execution is delayed. This is caused by data dependencies among the pre-executed instructions. This paper proposes the use of value prediction to solve these problems. Our way of the value prediction usage has the advantage over the conventional way of the usage for enhancing ILP, that there is no need to recover from misspeculation. Our evaluation results using SPECfp2000 benchmark show that our scheme can achieve equivalent performance to that of the previous TSD scheme without value prediction, with 75% of the register file size.","PeriodicalId":256908,"journal":{"name":"2009 IEEE International Conference on Computer Design","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Reducing register file size through instruction pre-execution enhanced by value prediction\",\"authors\":\"Yusuke Tanaka, H. Ando\",\"doi\":\"10.1109/ICCD.2009.5413149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-step physical register deallocation (TSD) is an architectural scheme, which enhances memory-level parallelism (MLP) by pre-executing instructions. Ideally, the TSD allows MLP under the unlimited number of physical registers to be exploited, and consequently only a small register file is necessary for MLP. In practice, however, the amount of MLP exploitable is limited, because there are cases where pre-execution is not performed or timing of pre-execution is delayed. This is caused by data dependencies among the pre-executed instructions. This paper proposes the use of value prediction to solve these problems. Our way of the value prediction usage has the advantage over the conventional way of the usage for enhancing ILP, that there is no need to recover from misspeculation. Our evaluation results using SPECfp2000 benchmark show that our scheme can achieve equivalent performance to that of the previous TSD scheme without value prediction, with 75% of the register file size.\",\"PeriodicalId\":256908,\"journal\":{\"name\":\"2009 IEEE International Conference on Computer Design\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2009.5413149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2009.5413149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

两步物理寄存器释放(TSD)是一种通过预执行指令来增强内存级并行性(MLP)的体系结构方案。理想情况下,TSD允许在无限数量的物理寄存器下使用MLP,因此MLP只需要一个小的寄存器文件。然而,在实践中,可利用的MLP数量是有限的,因为在某些情况下不执行预执行或延迟预执行的时间。这是由于预执行指令之间的数据依赖关系造成的。本文提出利用价值预测来解决这些问题。我们的价值预测使用方法与传统的提高ILP的使用方法相比,具有不需要从错误猜测中恢复的优点。我们使用SPECfp2000基准测试的评估结果表明,我们的方案在没有值预测的情况下可以达到与以前的TSD方案相当的性能,寄存器文件大小为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing register file size through instruction pre-execution enhanced by value prediction
Two-step physical register deallocation (TSD) is an architectural scheme, which enhances memory-level parallelism (MLP) by pre-executing instructions. Ideally, the TSD allows MLP under the unlimited number of physical registers to be exploited, and consequently only a small register file is necessary for MLP. In practice, however, the amount of MLP exploitable is limited, because there are cases where pre-execution is not performed or timing of pre-execution is delayed. This is caused by data dependencies among the pre-executed instructions. This paper proposes the use of value prediction to solve these problems. Our way of the value prediction usage has the advantage over the conventional way of the usage for enhancing ILP, that there is no need to recover from misspeculation. Our evaluation results using SPECfp2000 benchmark show that our scheme can achieve equivalent performance to that of the previous TSD scheme without value prediction, with 75% of the register file size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical performance models for 3T1D memories A novel SoC architecture on FPGA for ultra fast face detection A Technology-Agnostic Simulation Environment (TASE) for iterative custom IC design across processes Low-overhead error detection for Networks-on-Chip Interconnect performance corners considering crosstalk noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1