{"title":"两步无除法高斯消去的并行算法和体系结构","authors":"S. Peng, S. Sedukhin","doi":"10.1109/ICAPP.1997.651516","DOIUrl":null,"url":null,"abstract":"The design of optimal array processors for solving linear systems using two-step division-free Gaussian elimination method is considered. The two-step method circumvents the one-step one in terms of numerical stability. In spite of the rather complicated computations needed at each iteration of the two-step method, we develop an innovative parallel algorithm whose data dependency graph meets the requirements for regularity and locality. Then we derive two-dimensional array processors by adopting a systematic approach to investigate the set of all admissible solutions and obtain the optimal array processors under linear time-space scheduling. The array processors is optimal in terms of the number of processing elements used.","PeriodicalId":325978,"journal":{"name":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parallel algorithm and architectures for two-step division-free Gaussian elimination\",\"authors\":\"S. Peng, S. Sedukhin\",\"doi\":\"10.1109/ICAPP.1997.651516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of optimal array processors for solving linear systems using two-step division-free Gaussian elimination method is considered. The two-step method circumvents the one-step one in terms of numerical stability. In spite of the rather complicated computations needed at each iteration of the two-step method, we develop an innovative parallel algorithm whose data dependency graph meets the requirements for regularity and locality. Then we derive two-dimensional array processors by adopting a systematic approach to investigate the set of all admissible solutions and obtain the optimal array processors under linear time-space scheduling. The array processors is optimal in terms of the number of processing elements used.\",\"PeriodicalId\":325978,\"journal\":{\"name\":\"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPP.1997.651516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1997.651516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel algorithm and architectures for two-step division-free Gaussian elimination
The design of optimal array processors for solving linear systems using two-step division-free Gaussian elimination method is considered. The two-step method circumvents the one-step one in terms of numerical stability. In spite of the rather complicated computations needed at each iteration of the two-step method, we develop an innovative parallel algorithm whose data dependency graph meets the requirements for regularity and locality. Then we derive two-dimensional array processors by adopting a systematic approach to investigate the set of all admissible solutions and obtain the optimal array processors under linear time-space scheduling. The array processors is optimal in terms of the number of processing elements used.