学习用于视频目标检测的语义内聚合

Jun Liang, Haosheng Chen, Kaiwen Du, Yan Yan, Hanzi Wang
{"title":"学习用于视频目标检测的语义内聚合","authors":"Jun Liang, Haosheng Chen, Kaiwen Du, Yan Yan, Hanzi Wang","doi":"10.1145/3444685.3446273","DOIUrl":null,"url":null,"abstract":"Video object detection is a challenging task due to the appearance deterioration problems in video frames. Thus, object features extracted from different frames of a video are usually deteriorated in varying degrees. Currently, some state-of-the-art methods enhance the deteriorated object features in a reference frame by aggregating the undeteriorated object features extracted from other frames, simply based on their learned appearance relation among object features. In this paper, we propose a novel intra-inter semantic aggregation method (ISA) to learn more effective intra and inter relations for semantically aggregating object features. Specifically, in the proposed ISA, we first introduce an intra semantic aggregation module (Intra-SAM) to enhance the deteriorated spatial features based on the learned intra relation among the features at different positions of an individual object. Then, we present an inter semantic aggregation module (Inter-SAM) to enhance the deteriorated object features in the temporal domain based on the learned inter relation among object features. As a result, by leveraging Intra-SAM and Inter-SAM, the proposed ISA can generate discriminative features from the novel perspective of intra-inter semantic aggregation for robust video object detection. We conduct extensive experiments on the ImageNet VID dataset to evaluate ISA. The proposed ISA obtains 84.5% mAP and 85.2% mAP with ResNet-101 and ResNeXt-101, and it achieves superior performance compared with several state-of-the-art video object detectors.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning intra-inter semantic aggregation for video object detection\",\"authors\":\"Jun Liang, Haosheng Chen, Kaiwen Du, Yan Yan, Hanzi Wang\",\"doi\":\"10.1145/3444685.3446273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video object detection is a challenging task due to the appearance deterioration problems in video frames. Thus, object features extracted from different frames of a video are usually deteriorated in varying degrees. Currently, some state-of-the-art methods enhance the deteriorated object features in a reference frame by aggregating the undeteriorated object features extracted from other frames, simply based on their learned appearance relation among object features. In this paper, we propose a novel intra-inter semantic aggregation method (ISA) to learn more effective intra and inter relations for semantically aggregating object features. Specifically, in the proposed ISA, we first introduce an intra semantic aggregation module (Intra-SAM) to enhance the deteriorated spatial features based on the learned intra relation among the features at different positions of an individual object. Then, we present an inter semantic aggregation module (Inter-SAM) to enhance the deteriorated object features in the temporal domain based on the learned inter relation among object features. As a result, by leveraging Intra-SAM and Inter-SAM, the proposed ISA can generate discriminative features from the novel perspective of intra-inter semantic aggregation for robust video object detection. We conduct extensive experiments on the ImageNet VID dataset to evaluate ISA. The proposed ISA obtains 84.5% mAP and 85.2% mAP with ResNet-101 and ResNeXt-101, and it achieves superior performance compared with several state-of-the-art video object detectors.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于视频帧的外观退化问题,视频目标检测是一项具有挑战性的任务。因此,从视频的不同帧中提取的目标特征通常会有不同程度的退化。目前,一些最先进的方法通过聚合从其他帧中提取的未劣化目标特征来增强参考帧中的劣化目标特征,简单地基于它们学习到的目标特征之间的外观关系。在本文中,我们提出了一种新的语义内-语义间聚合方法(ISA),以学习更有效的语义聚合对象特征的内部和相互关系。具体来说,我们首先引入了一个内部语义聚合模块(intra - semantic aggregation module,简称intra - sam),基于学习到的单个对象不同位置特征之间的内部关系来增强退化的空间特征。然后,基于学习到的对象特征之间的相互关系,提出了一种语义间聚合模块(inter - sam),在时域增强劣化对象特征。因此,利用Intra-SAM和Inter-SAM,本文提出的ISA可以从语义内-语义间聚合的新角度生成判别特征,用于鲁棒视频目标检测。我们在ImageNet VID数据集上进行了大量的实验来评估ISA。采用ResNet-101和ResNeXt-101实现了84.5%的mAP和85.2%的mAP,与几种最先进的视频目标检测器相比,具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning intra-inter semantic aggregation for video object detection
Video object detection is a challenging task due to the appearance deterioration problems in video frames. Thus, object features extracted from different frames of a video are usually deteriorated in varying degrees. Currently, some state-of-the-art methods enhance the deteriorated object features in a reference frame by aggregating the undeteriorated object features extracted from other frames, simply based on their learned appearance relation among object features. In this paper, we propose a novel intra-inter semantic aggregation method (ISA) to learn more effective intra and inter relations for semantically aggregating object features. Specifically, in the proposed ISA, we first introduce an intra semantic aggregation module (Intra-SAM) to enhance the deteriorated spatial features based on the learned intra relation among the features at different positions of an individual object. Then, we present an inter semantic aggregation module (Inter-SAM) to enhance the deteriorated object features in the temporal domain based on the learned inter relation among object features. As a result, by leveraging Intra-SAM and Inter-SAM, the proposed ISA can generate discriminative features from the novel perspective of intra-inter semantic aggregation for robust video object detection. We conduct extensive experiments on the ImageNet VID dataset to evaluate ISA. The proposed ISA obtains 84.5% mAP and 85.2% mAP with ResNet-101 and ResNeXt-101, and it achieves superior performance compared with several state-of-the-art video object detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1