使用半监督词性标注和音译的乌尔都语到英语的低资源语音翻译

A. Aminzadeh, Wade Shen
{"title":"使用半监督词性标注和音译的乌尔都语到英语的低资源语音翻译","authors":"A. Aminzadeh, Wade Shen","doi":"10.1109/SLT.2008.4777891","DOIUrl":null,"url":null,"abstract":"This paper describes the construction of ASR and MT systems for translation of speech from Urdu into English. As both Urdu pronunciation lexicons and Urdu-English bitexts are sparse, we employ several techniques that make use of semi-supervised annotation to improve ASR and MT training. Specifically, we describe 1) the construction of a semi-supervised HMM-based part-of-speech tagger that is used to train factored translation models and 2) the use of an HMM-based transliterator from which we derive a spelling-to-pronunciation model for Urdu used in ASR training. We describe experiments performed for both ASR and MT training in the context of the Urdu-to-English task of the NIST MT08 Evaluation and we compare methods making use of additional annotation with standard statistical MT and ASR baselines.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-resource speech translation of Urdu to English using semi-supervised part-of-speech tagging and transliteration\",\"authors\":\"A. Aminzadeh, Wade Shen\",\"doi\":\"10.1109/SLT.2008.4777891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the construction of ASR and MT systems for translation of speech from Urdu into English. As both Urdu pronunciation lexicons and Urdu-English bitexts are sparse, we employ several techniques that make use of semi-supervised annotation to improve ASR and MT training. Specifically, we describe 1) the construction of a semi-supervised HMM-based part-of-speech tagger that is used to train factored translation models and 2) the use of an HMM-based transliterator from which we derive a spelling-to-pronunciation model for Urdu used in ASR training. We describe experiments performed for both ASR and MT training in the context of the Urdu-to-English task of the NIST MT08 Evaluation and we compare methods making use of additional annotation with standard statistical MT and ASR baselines.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了乌尔都语语音翻译系统和机器翻译系统的构建。由于乌尔都语发音词汇和乌尔都语-英语比特文本都是稀疏的,我们采用了几种利用半监督注释的技术来改进ASR和MT训练。具体来说,我们描述了1)基于半监督hmm的词性标注器的构建,用于训练因子翻译模型;2)基于hmm的转写器的使用,我们从中获得了用于ASR训练的乌尔都语拼写到发音模型。我们描述了在NIST MT08评估的乌尔都语-英语任务背景下进行的ASR和MT训练的实验,并将使用附加注释的方法与标准统计MT和ASR基线进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-resource speech translation of Urdu to English using semi-supervised part-of-speech tagging and transliteration
This paper describes the construction of ASR and MT systems for translation of speech from Urdu into English. As both Urdu pronunciation lexicons and Urdu-English bitexts are sparse, we employ several techniques that make use of semi-supervised annotation to improve ASR and MT training. Specifically, we describe 1) the construction of a semi-supervised HMM-based part-of-speech tagger that is used to train factored translation models and 2) the use of an HMM-based transliterator from which we derive a spelling-to-pronunciation model for Urdu used in ASR training. We describe experiments performed for both ASR and MT training in the context of the Urdu-to-English task of the NIST MT08 Evaluation and we compare methods making use of additional annotation with standard statistical MT and ASR baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
“Who is this” quiz dialogue system and users' evaluation Latent dirichlet language model for speech recognition Modelling user behaviour in the HIS-POMDP dialogue manager A syntactic language model based on incremental CCG parsing Improving word segmentation for Thai speech translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1