使用基于地图的粒子滤波策略检测、跟踪和预测工业机器人细胞内的人体运动

M. Ragaglia, L. Bascetta, P. Rocco
{"title":"使用基于地图的粒子滤波策略检测、跟踪和预测工业机器人细胞内的人体运动","authors":"M. Ragaglia, L. Bascetta, P. Rocco","doi":"10.1109/ICAR.2015.7251482","DOIUrl":null,"url":null,"abstract":"In order to enable safe and efficient human-robot interaction it is beneficial for the robot control system to be able not only to detect the presence and track the motion of human workers entering the robotic cell, but also to predict in the least possible time their trajectory and the area they are heading to. This paper proposes an innovative particle filtering strategy addressing at the same time the problems of Human Detection and Tracking and Intention Estimation, based on low-cost commercial RGB surveillance cameras, a map of the robotic cell environment, and a probabilistic description of the trajectories followed by human workers inside the cell. Results of several validation experiments are presented.","PeriodicalId":432004,"journal":{"name":"2015 International Conference on Advanced Robotics (ICAR)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Detecting, tracking and predicting human motion inside an industrial robotic cell using a map-based particle filtering strategy\",\"authors\":\"M. Ragaglia, L. Bascetta, P. Rocco\",\"doi\":\"10.1109/ICAR.2015.7251482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to enable safe and efficient human-robot interaction it is beneficial for the robot control system to be able not only to detect the presence and track the motion of human workers entering the robotic cell, but also to predict in the least possible time their trajectory and the area they are heading to. This paper proposes an innovative particle filtering strategy addressing at the same time the problems of Human Detection and Tracking and Intention Estimation, based on low-cost commercial RGB surveillance cameras, a map of the robotic cell environment, and a probabilistic description of the trajectories followed by human workers inside the cell. Results of several validation experiments are presented.\",\"PeriodicalId\":432004,\"journal\":{\"name\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2015.7251482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2015.7251482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

为了实现安全高效的人机交互,机器人控制系统不仅要能够检测和跟踪进入机器人单元的人类工人的运动,而且要能够在尽可能短的时间内预测他们的轨迹和他们要去的区域。本文提出了一种创新的粒子滤波策略,同时解决了人类检测和跟踪以及意图估计问题,该策略基于低成本商用RGB监控摄像机,机器人细胞环境地图以及细胞内人类工作人员遵循的轨迹的概率描述。给出了几个验证实验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting, tracking and predicting human motion inside an industrial robotic cell using a map-based particle filtering strategy
In order to enable safe and efficient human-robot interaction it is beneficial for the robot control system to be able not only to detect the presence and track the motion of human workers entering the robotic cell, but also to predict in the least possible time their trajectory and the area they are heading to. This paper proposes an innovative particle filtering strategy addressing at the same time the problems of Human Detection and Tracking and Intention Estimation, based on low-cost commercial RGB surveillance cameras, a map of the robotic cell environment, and a probabilistic description of the trajectories followed by human workers inside the cell. Results of several validation experiments are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the EMG-based torque estimation for humans coupled with a force-controlled elbow exoskeleton The KIT whole-body human motion database Visual matching of stroke order in robotic calligraphy Real-time motion adaptation using relative distance space representation Optimization of the switching surface for the simplest passive dynamic biped
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1