ArF准分子激光照射氟化钙的激光损伤

M. Azumi, E. Nakahata
{"title":"ArF准分子激光照射氟化钙的激光损伤","authors":"M. Azumi, E. Nakahata","doi":"10.1117/12.2192195","DOIUrl":null,"url":null,"abstract":"Artificially grown excimer grade calcium fluoride is one of key optical materials used in microlithography applications. Such calcium fluoride is required for optical components requiring high laser durability and laser induced bulk damage threshold (LIDT). The mechanical properties of calcium fluoride can vary depending on the crystal axis, <111>, <110> and <100>. For example, material hardness is highest in the {100} crystal orientation. Furthermore, it is also known to cleave in the {111} plane. Therefore there is a possibility of a property that originates in such a crystal structure that influences LIDT. In this study, we investigated the relationship between crystal structure, laser durability and LIDT. The influence in the relation between the polarization plane of the ArF excimer laser and the crystal orientation of calcium fluoride in regards to LIDT was examined. The samples were all prepared from the same CaF2 crystal with optical axis's of <111>, <110> and <100>. The azimuth of the samples was measured by the reflection Laue method. For the experiment, the samples were rotated to the polarization plane of the ArF excimer laser, and the change in the number of irradiation pulses that damage was observed and measured. As a result, we determined the position of the crystal orientation of the calcium fluoride relative to the polarization plane of the ArF excimer laser that produced the highest LIDT.","PeriodicalId":204978,"journal":{"name":"SPIE Laser Damage","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Laser damage of calcium fluoride by ArF excimer laser irradiation\",\"authors\":\"M. Azumi, E. Nakahata\",\"doi\":\"10.1117/12.2192195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificially grown excimer grade calcium fluoride is one of key optical materials used in microlithography applications. Such calcium fluoride is required for optical components requiring high laser durability and laser induced bulk damage threshold (LIDT). The mechanical properties of calcium fluoride can vary depending on the crystal axis, <111>, <110> and <100>. For example, material hardness is highest in the {100} crystal orientation. Furthermore, it is also known to cleave in the {111} plane. Therefore there is a possibility of a property that originates in such a crystal structure that influences LIDT. In this study, we investigated the relationship between crystal structure, laser durability and LIDT. The influence in the relation between the polarization plane of the ArF excimer laser and the crystal orientation of calcium fluoride in regards to LIDT was examined. The samples were all prepared from the same CaF2 crystal with optical axis's of <111>, <110> and <100>. The azimuth of the samples was measured by the reflection Laue method. For the experiment, the samples were rotated to the polarization plane of the ArF excimer laser, and the change in the number of irradiation pulses that damage was observed and measured. As a result, we determined the position of the crystal orientation of the calcium fluoride relative to the polarization plane of the ArF excimer laser that produced the highest LIDT.\",\"PeriodicalId\":204978,\"journal\":{\"name\":\"SPIE Laser Damage\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2192195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2192195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

人工生长的准分子级氟化钙是微光刻应用的关键光学材料之一。这种氟化钙是需要高激光耐久性和激光诱导体损伤阈值(LIDT)的光学元件所必需的。氟化钙的机械性能会随结晶轴、、和而变化。例如,材料硬度在{100}晶向中最高。此外,它也已知在{111}面中分裂。因此,有可能在这种晶体结构中产生一种影响LIDT的特性。在这项研究中,我们研究了晶体结构、激光耐久性和LIDT之间的关系。研究了ArF准分子激光偏振面与氟化钙晶体取向的关系对LIDT的影响。样品均由光轴为、和的同一CaF2晶体制备。用反射法测量样品的方位角。在实验中,将样品旋转到ArF准分子激光器的偏振面,观察并测量辐照脉冲数的变化。因此,我们确定了氟化钙的晶体取向相对于产生最高LIDT的ArF准分子激光器偏振平面的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser damage of calcium fluoride by ArF excimer laser irradiation
Artificially grown excimer grade calcium fluoride is one of key optical materials used in microlithography applications. Such calcium fluoride is required for optical components requiring high laser durability and laser induced bulk damage threshold (LIDT). The mechanical properties of calcium fluoride can vary depending on the crystal axis, <111>, <110> and <100>. For example, material hardness is highest in the {100} crystal orientation. Furthermore, it is also known to cleave in the {111} plane. Therefore there is a possibility of a property that originates in such a crystal structure that influences LIDT. In this study, we investigated the relationship between crystal structure, laser durability and LIDT. The influence in the relation between the polarization plane of the ArF excimer laser and the crystal orientation of calcium fluoride in regards to LIDT was examined. The samples were all prepared from the same CaF2 crystal with optical axis's of <111>, <110> and <100>. The azimuth of the samples was measured by the reflection Laue method. For the experiment, the samples were rotated to the polarization plane of the ArF excimer laser, and the change in the number of irradiation pulses that damage was observed and measured. As a result, we determined the position of the crystal orientation of the calcium fluoride relative to the polarization plane of the ArF excimer laser that produced the highest LIDT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of particle shape on the laser-contaminant interaction induced damage on the protective capping layer of 1ω high reflector mirror coatings Direct comparison of statistical damage frequency method and raster scan procedure Refined metrology of spatio-temporal dynamics of nanosecond laser pulses Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams Direct absorption measurements in thin rods and optical fibers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1