鲁棒拷贝数变异检测中的偏差和噪声消除

Fatima Zare, Sardar Ansari, K. Najarian, S. Nabavi
{"title":"鲁棒拷贝数变异检测中的偏差和噪声消除","authors":"Fatima Zare, Sardar Ansari, K. Najarian, S. Nabavi","doi":"10.1145/3107411.3108199","DOIUrl":null,"url":null,"abstract":"High-throughput next generation sequencing (NGS) technologies have created an opportunity for detecting copy number variations (CNVs) more accurately. In this work, we introduce a novel preprocessing pipeline to improve the detection accuracy of CNVs in heterogeneous NGS data such as cancer whole exome sequencing data. We employ several normalizations to reduce biases due to GC contents, mappability and tumor contamination.We also utilize the Taut String method as an efficient effective smoothing approach to reduce noise.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias and Noise Cancellation for Robust Copy Number Variation Detection\",\"authors\":\"Fatima Zare, Sardar Ansari, K. Najarian, S. Nabavi\",\"doi\":\"10.1145/3107411.3108199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput next generation sequencing (NGS) technologies have created an opportunity for detecting copy number variations (CNVs) more accurately. In this work, we introduce a novel preprocessing pipeline to improve the detection accuracy of CNVs in heterogeneous NGS data such as cancer whole exome sequencing data. We employ several normalizations to reduce biases due to GC contents, mappability and tumor contamination.We also utilize the Taut String method as an efficient effective smoothing approach to reduce noise.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高通量下一代测序(NGS)技术为更准确地检测拷贝数变异(CNVs)创造了机会。在这项工作中,我们引入了一种新的预处理管道,以提高异质NGS数据(如癌症全外显子组测序数据)中CNVs的检测精度。我们采用了几种归一化来减少由于GC含量、可映射性和肿瘤污染造成的偏差。我们还利用紧弦方法作为一种有效的平滑方法来降低噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bias and Noise Cancellation for Robust Copy Number Variation Detection
High-throughput next generation sequencing (NGS) technologies have created an opportunity for detecting copy number variations (CNVs) more accurately. In this work, we introduce a novel preprocessing pipeline to improve the detection accuracy of CNVs in heterogeneous NGS data such as cancer whole exome sequencing data. We employ several normalizations to reduce biases due to GC contents, mappability and tumor contamination.We also utilize the Taut String method as an efficient effective smoothing approach to reduce noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1