最佳故障限流器放置

J. Teng, Chan-nan Lu
{"title":"最佳故障限流器放置","authors":"J. Teng, Chan-nan Lu","doi":"10.1109/ISAP.2007.4441611","DOIUrl":null,"url":null,"abstract":"Due to the difficulty in power network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in transmission and distribution system operations. The utilization of fault current limiters (FCLs) in power system provides an effective way to suppress fault currents and result in considerable saving in the investment of high capacity circuit breakers. In a loop power system, the advantages would depend on the numbers and locations of FCL installations. This paper presents a method to determine optimum numbers and locations for FCL placement in terms of installing smallest FCL parameters to restrain short-circuit currents under circuit breakers' interrupting ratings. In the proposed approach, sensitivity factors of bus fault current reduction due to changes in the branch parameters are derived and used to choose candidates for FCL installations. A genetic-algorithm-based method is then designed to include the sensitivity information in searching for best locations and parameters of FCL to meet the requirements. Test results demonstrate the efficiency and accuracy of the proposed method.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Optimum Fault Current Limiter Placement\",\"authors\":\"J. Teng, Chan-nan Lu\",\"doi\":\"10.1109/ISAP.2007.4441611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the difficulty in power network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in transmission and distribution system operations. The utilization of fault current limiters (FCLs) in power system provides an effective way to suppress fault currents and result in considerable saving in the investment of high capacity circuit breakers. In a loop power system, the advantages would depend on the numbers and locations of FCL installations. This paper presents a method to determine optimum numbers and locations for FCL placement in terms of installing smallest FCL parameters to restrain short-circuit currents under circuit breakers' interrupting ratings. In the proposed approach, sensitivity factors of bus fault current reduction due to changes in the branch parameters are derived and used to choose candidates for FCL installations. A genetic-algorithm-based method is then designed to include the sensitivity information in searching for best locations and parameters of FCL to meet the requirements. Test results demonstrate the efficiency and accuracy of the proposed method.\",\"PeriodicalId\":320068,\"journal\":{\"name\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Intelligent Systems Applications to Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP.2007.4441611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

由于电网加固和多分布式代互联的困难,故障电流水平已成为输配电系统运行中的一个严重问题。故障限流器在电力系统中的应用为抑制故障电流提供了一种有效的方法,大大节省了大容量断路器的投资。在环路电力系统中,优势将取决于整柜装置的数量和位置。本文提出了一种在断路器断流额定值下,以最小的FCL参数来确定FCL放置的最佳数量和位置的方法。在该方法中,推导了由于支路参数变化导致的母线故障电流减小的敏感性因子,并将其用于FCL装置的候选选择。在此基础上,设计了一种基于遗传算法的方法,利用灵敏度信息寻找最优位置和最优参数。实验结果证明了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimum Fault Current Limiter Placement
Due to the difficulty in power network reinforcement and the interconnection of more distributed generations, fault current level has become a serious problem in transmission and distribution system operations. The utilization of fault current limiters (FCLs) in power system provides an effective way to suppress fault currents and result in considerable saving in the investment of high capacity circuit breakers. In a loop power system, the advantages would depend on the numbers and locations of FCL installations. This paper presents a method to determine optimum numbers and locations for FCL placement in terms of installing smallest FCL parameters to restrain short-circuit currents under circuit breakers' interrupting ratings. In the proposed approach, sensitivity factors of bus fault current reduction due to changes in the branch parameters are derived and used to choose candidates for FCL installations. A genetic-algorithm-based method is then designed to include the sensitivity information in searching for best locations and parameters of FCL to meet the requirements. Test results demonstrate the efficiency and accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1