通过应用动态线路额定值提高实时操作效率

K. Cheung, Jun Wu
{"title":"通过应用动态线路额定值提高实时操作效率","authors":"K. Cheung, Jun Wu","doi":"10.1109/APPEEC.2016.7779477","DOIUrl":null,"url":null,"abstract":"Facing the challenges posed by the penetration of a new fleet of renewable energy resources which are variable and distributed in nature, transmission organizations and grid operators around the world are in the process of enhancing their dispatch systems with broader capabilities and higher economic efficiency. Traditionally, static line rating (SLR) of a line is conservatively calculated under the “worst-case” operating conditions and are updated infrequently. These conservative assumptions may restrict the line capacity whenever the real weather condition is less stressful. More accurate assessment of transmission flow limits will directly impact the efficiency of system operations. Weather-based real-time dynamic line rating (DLR) is the current limit determined by real-time measurements of weather conditions surrounding the conductor. Increasing thermal line ratings, DLR has the potential to reduce transmission congestion and enhance operational efficiency. This paper applies DLR to the co-optimization problem of real-time energy and reserves using a security constrained economic dispatch (SCED) algorithm. Using real-time DLR, we demonstrate that the real-time SCED is able to dispatch the system more economically, relieve transmission congestion and reserve scarcity, and as a whole improved operational efficiency without compromising system security. Case studies are performed on a large power system of 48,000 transmission lines.","PeriodicalId":117485,"journal":{"name":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhancement of real-time operational efficiency by applying dynamic line ratings\",\"authors\":\"K. Cheung, Jun Wu\",\"doi\":\"10.1109/APPEEC.2016.7779477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facing the challenges posed by the penetration of a new fleet of renewable energy resources which are variable and distributed in nature, transmission organizations and grid operators around the world are in the process of enhancing their dispatch systems with broader capabilities and higher economic efficiency. Traditionally, static line rating (SLR) of a line is conservatively calculated under the “worst-case” operating conditions and are updated infrequently. These conservative assumptions may restrict the line capacity whenever the real weather condition is less stressful. More accurate assessment of transmission flow limits will directly impact the efficiency of system operations. Weather-based real-time dynamic line rating (DLR) is the current limit determined by real-time measurements of weather conditions surrounding the conductor. Increasing thermal line ratings, DLR has the potential to reduce transmission congestion and enhance operational efficiency. This paper applies DLR to the co-optimization problem of real-time energy and reserves using a security constrained economic dispatch (SCED) algorithm. Using real-time DLR, we demonstrate that the real-time SCED is able to dispatch the system more economically, relieve transmission congestion and reserve scarcity, and as a whole improved operational efficiency without compromising system security. Case studies are performed on a large power system of 48,000 transmission lines.\",\"PeriodicalId\":117485,\"journal\":{\"name\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2016.7779477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2016.7779477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

面对可再生能源这种具有可变和分布式特性的新能源的渗透所带来的挑战,世界各地的输电组织和电网运营商都在提高其调度系统的能力和经济效率。传统上,线路的静态额定功率(SLR)是在“最坏”运行条件下保守计算的,并且不经常更新。这些保守的假设可能会限制实际天气条件下的线路容量。更准确地评估输电流量限制将直接影响系统的运行效率。基于天气的实时动态线路额定值(DLR)是由导体周围天气条件的实时测量确定的电流限制。提高热电线路额定值,DLR具有减少传输拥塞和提高运行效率的潜力。本文采用安全约束经济调度算法,将DLR应用于实时能源与储备协同优化问题。利用实时DLR,我们证明了实时SCED能够更经济地调度系统,缓解传输拥塞和储备短缺,并在不影响系统安全性的情况下整体提高运行效率。案例研究是在一个有48,000条输电线路的大型电力系统上进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement of real-time operational efficiency by applying dynamic line ratings
Facing the challenges posed by the penetration of a new fleet of renewable energy resources which are variable and distributed in nature, transmission organizations and grid operators around the world are in the process of enhancing their dispatch systems with broader capabilities and higher economic efficiency. Traditionally, static line rating (SLR) of a line is conservatively calculated under the “worst-case” operating conditions and are updated infrequently. These conservative assumptions may restrict the line capacity whenever the real weather condition is less stressful. More accurate assessment of transmission flow limits will directly impact the efficiency of system operations. Weather-based real-time dynamic line rating (DLR) is the current limit determined by real-time measurements of weather conditions surrounding the conductor. Increasing thermal line ratings, DLR has the potential to reduce transmission congestion and enhance operational efficiency. This paper applies DLR to the co-optimization problem of real-time energy and reserves using a security constrained economic dispatch (SCED) algorithm. Using real-time DLR, we demonstrate that the real-time SCED is able to dispatch the system more economically, relieve transmission congestion and reserve scarcity, and as a whole improved operational efficiency without compromising system security. Case studies are performed on a large power system of 48,000 transmission lines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electric Vehicle charging management algorithm for a UK low-voltage residential distribution network An optimization model of EVs charging and discharging for power system demand leveling A circuit approach for the propagation analysis of voltage unbalance emission in power systems A novel high-power AC/AC modular multilevel converter in Y configuration and its control strategy Comprehensive optimization for power system with multiple HVDC infeed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1