基于书签相似度的社会书签污染防治方法性能评价

H. Hisamatsu, T. Hatanaka
{"title":"基于书签相似度的社会书签污染防治方法性能评价","authors":"H. Hisamatsu, T. Hatanaka","doi":"10.1109/ITNG.2012.144","DOIUrl":null,"url":null,"abstract":"Social Book marking (SBM) is one of the most widely used Web services. An SBM website displays and shares each user's bookmarks. The SBM service aggregates the number of users who bookmark a given Web page and provides useful information as a result of these aggregations. However, an increase in the popularity of the SBM service and in the number of the users of the SBM service results in an increase in the amount of SBM SPAM. In addition, the SBM service generates irrelevant information to many users because of the aggregation of a large number of bookmarks, we call this problem \"SBM pollution.\" In this paper, we propose a method for countering the problem of SBM pollution based on the degree of bookmark similarity. The proposed method creates blacklists that contain lists of users having a high degree of bookmark similarity. Based on the created blacklists, the number of bookmarks of the Web pages influenced by SBM pollution is reduced. From the results of the performance evaluation, we show that our method reduces the number of bookmarks of most Web pages influenced by the SBM pollution to a great extent.","PeriodicalId":117236,"journal":{"name":"2012 Ninth International Conference on Information Technology - New Generations","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of a Countering Method to Social Bookmarking Pollution Based on Degree of Bookmark Similarity\",\"authors\":\"H. Hisamatsu, T. Hatanaka\",\"doi\":\"10.1109/ITNG.2012.144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social Book marking (SBM) is one of the most widely used Web services. An SBM website displays and shares each user's bookmarks. The SBM service aggregates the number of users who bookmark a given Web page and provides useful information as a result of these aggregations. However, an increase in the popularity of the SBM service and in the number of the users of the SBM service results in an increase in the amount of SBM SPAM. In addition, the SBM service generates irrelevant information to many users because of the aggregation of a large number of bookmarks, we call this problem \\\"SBM pollution.\\\" In this paper, we propose a method for countering the problem of SBM pollution based on the degree of bookmark similarity. The proposed method creates blacklists that contain lists of users having a high degree of bookmark similarity. Based on the created blacklists, the number of bookmarks of the Web pages influenced by SBM pollution is reduced. From the results of the performance evaluation, we show that our method reduces the number of bookmarks of most Web pages influenced by the SBM pollution to a great extent.\",\"PeriodicalId\":117236,\"journal\":{\"name\":\"2012 Ninth International Conference on Information Technology - New Generations\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth International Conference on Information Technology - New Generations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNG.2012.144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Information Technology - New Generations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNG.2012.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会图书标记(SBM)是使用最广泛的Web服务之一。SBM网站显示并共享每个用户的书签。SBM服务聚合为给定Web页面添加书签的用户数量,并根据这些聚合提供有用的信息。然而,随着SBM服务的普及和SBM服务用户数量的增加,导致SBM垃圾邮件的数量增加。此外,由于大量书签的聚集,SBM服务对很多用户产生了不相关的信息,我们称这种问题为“SBM污染”。本文提出了一种基于书签相似度的SBM污染处理方法。提出的方法创建黑名单,其中包含书签高度相似的用户列表。根据创建的黑名单,减少受SBM污染影响的网页的书签数量。从性能评估结果来看,我们的方法在很大程度上减少了受SBM污染影响的大多数网页的书签数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Evaluation of a Countering Method to Social Bookmarking Pollution Based on Degree of Bookmark Similarity
Social Book marking (SBM) is one of the most widely used Web services. An SBM website displays and shares each user's bookmarks. The SBM service aggregates the number of users who bookmark a given Web page and provides useful information as a result of these aggregations. However, an increase in the popularity of the SBM service and in the number of the users of the SBM service results in an increase in the amount of SBM SPAM. In addition, the SBM service generates irrelevant information to many users because of the aggregation of a large number of bookmarks, we call this problem "SBM pollution." In this paper, we propose a method for countering the problem of SBM pollution based on the degree of bookmark similarity. The proposed method creates blacklists that contain lists of users having a high degree of bookmark similarity. Based on the created blacklists, the number of bookmarks of the Web pages influenced by SBM pollution is reduced. From the results of the performance evaluation, we show that our method reduces the number of bookmarks of most Web pages influenced by the SBM pollution to a great extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Brain Imaging for Diagnosis of Schizophrenia: Challenges, Successes and a Research Road Map User-centric Trust-based Recommendation Do Videowikis on the Web Support Better (Constructivist) Learning in the Basics of Information Systems Science? An MDA-Based Approach for WS Composition Using UML Scenarios A Mobile Data Analysis Framework for Environmental Health Decision Support
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1