联合稀疏恢复的快速多重正交匹配追踪算法

Xiang Long, Xiang Hu, Li Shaodong, M. Xiaoyan
{"title":"联合稀疏恢复的快速多重正交匹配追踪算法","authors":"Xiang Long, Xiang Hu, Li Shaodong, M. Xiaoyan","doi":"10.1109/RADAR.2016.8059438","DOIUrl":null,"url":null,"abstract":"To recover the jointly sparse signal efficiently, a fast multiple orthogonal matching pursuit algorithm (FMOMP) is proposed in the paper. By choosing multiple indices per iteration, the FMOMP converges much faster and improves the computational efficiency over the existing OMPMMV algorithm. We also prove that FMOMP performs the exact recovery of any K row jointly sparse signal from the aspect of sensing matrix's restricted isometry property (RIP). Empirical experiments show that FMOMP is very efficient in recovering jointly sparse signal compared to the state of the art recovery algorithms.","PeriodicalId":245387,"journal":{"name":"2016 CIE International Conference on Radar (RADAR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fast multiple orthogonal matching pursuit algorithm for jointly sparse recovery\",\"authors\":\"Xiang Long, Xiang Hu, Li Shaodong, M. Xiaoyan\",\"doi\":\"10.1109/RADAR.2016.8059438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To recover the jointly sparse signal efficiently, a fast multiple orthogonal matching pursuit algorithm (FMOMP) is proposed in the paper. By choosing multiple indices per iteration, the FMOMP converges much faster and improves the computational efficiency over the existing OMPMMV algorithm. We also prove that FMOMP performs the exact recovery of any K row jointly sparse signal from the aspect of sensing matrix's restricted isometry property (RIP). Empirical experiments show that FMOMP is very efficient in recovering jointly sparse signal compared to the state of the art recovery algorithms.\",\"PeriodicalId\":245387,\"journal\":{\"name\":\"2016 CIE International Conference on Radar (RADAR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 CIE International Conference on Radar (RADAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2016.8059438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 CIE International Conference on Radar (RADAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.8059438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了有效地恢复联合稀疏信号,本文提出了一种快速多重正交匹配追踪算法(FMOMP)。通过每次迭代选择多个指标,FMOMP的收敛速度比现有的OMPMMV算法快得多,提高了计算效率。我们还从感知矩阵的受限等距特性(RIP)方面证明了FMOMP对任意K行联合稀疏信号的精确恢复。实验表明,与现有的联合稀疏信号恢复算法相比,FMOMP在恢复联合稀疏信号方面具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast multiple orthogonal matching pursuit algorithm for jointly sparse recovery
To recover the jointly sparse signal efficiently, a fast multiple orthogonal matching pursuit algorithm (FMOMP) is proposed in the paper. By choosing multiple indices per iteration, the FMOMP converges much faster and improves the computational efficiency over the existing OMPMMV algorithm. We also prove that FMOMP performs the exact recovery of any K row jointly sparse signal from the aspect of sensing matrix's restricted isometry property (RIP). Empirical experiments show that FMOMP is very efficient in recovering jointly sparse signal compared to the state of the art recovery algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refined SAR image segmentation algorithm based on K-means clustering Extended PGA processing of high resolution airborne SAR imagery reconstructed via backprojection algorithm Design of Ka-band practical waveguide duplexer Adaptive structured detector and performance assessment in training-limited cases Vivaldi antenna for railway cutting monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1