{"title":"全向移动机器人最优轨迹跟踪控制","authors":"M. Galicki, M. Banaszkiewicz","doi":"10.1109/RoMoCo.2019.8787377","DOIUrl":null,"url":null,"abstract":"In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.","PeriodicalId":415070,"journal":{"name":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimal trajectory tracking control of omni-directional mobile robots\",\"authors\":\"M. Galicki, M. Banaszkiewicz\",\"doi\":\"10.1109/RoMoCo.2019.8787377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.\",\"PeriodicalId\":415070,\"journal\":{\"name\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 12th International Workshop on Robot Motion and Control (RoMoCo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoMoCo.2019.8787377\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 12th International Workshop on Robot Motion and Control (RoMoCo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoMoCo.2019.8787377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal trajectory tracking control of omni-directional mobile robots
In the present work, a new task space nonsingular terminal sliding mode (TSM) manifold defined by non-linear integral equation of the first order with respect to the task tracking error and a kind of computed torque method are introduced to control four mecanum wheeled mobile robot (FMWMR). On account of the full rank of the Jacobian matrix of the omni-directional holonomic mechanism, the proposed control scheme is shown to be globally finite-time stable despite uncertain dynamic equations and (globally) unbounded disturbances acting on the FMWMR. Moreover, the proposed control law provides (locally) optimal solution. The numerical simulations carried out for a youBot platform with four mecanum wheels illustrate both the performance of the proposed control scheme and simultaneously its minimizing property for some practically useful objective function.