{"title":"柔性cosat固体的有限元模型","authors":"O. Bauchau, M. Shan","doi":"10.1115/detc2020-22134","DOIUrl":null,"url":null,"abstract":"\n The application of the finite element method to the modeling of Cosserat solids is investigated in detail. In two- and three-dimensional elasticity problems, the nodal unknowns are the components of the displacement vector, which form a linear field. In contrast, when dealing with Cosserat solids, the nodal unknowns form the special Euclidean group SE(3), a nonlinear manifold. This observation has numerous implications on the implementation of the finite element method and raises numerous questions: (1) What is the most suitable representation of this nonlinear manifold? (2) How is it interpolated over one element? (3) How is the associated strain field interpolated? (4) What is the most efficient way to obtain the discrete equations of motion? All these questions are, of course intertwined. This paper shows that reliable schemes are available for the interpolation of the motion and curvature fields. The interpolated fields depend on relative nodal motions only, and hence, are both objective and tensorial. Because these schemes depend on relative nodal motions only, only local parameterization is required, thereby avoiding the occurrence of singularities. For Cosserat solids, it is preferable to perform the discretization operation first, followed by the variation operation. This approach leads to considerable computation efficiency and simplicity.","PeriodicalId":236538,"journal":{"name":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Models for Flexible Cosserat Solids\",\"authors\":\"O. Bauchau, M. Shan\",\"doi\":\"10.1115/detc2020-22134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The application of the finite element method to the modeling of Cosserat solids is investigated in detail. In two- and three-dimensional elasticity problems, the nodal unknowns are the components of the displacement vector, which form a linear field. In contrast, when dealing with Cosserat solids, the nodal unknowns form the special Euclidean group SE(3), a nonlinear manifold. This observation has numerous implications on the implementation of the finite element method and raises numerous questions: (1) What is the most suitable representation of this nonlinear manifold? (2) How is it interpolated over one element? (3) How is the associated strain field interpolated? (4) What is the most efficient way to obtain the discrete equations of motion? All these questions are, of course intertwined. This paper shows that reliable schemes are available for the interpolation of the motion and curvature fields. The interpolated fields depend on relative nodal motions only, and hence, are both objective and tensorial. Because these schemes depend on relative nodal motions only, only local parameterization is required, thereby avoiding the occurrence of singularities. For Cosserat solids, it is preferable to perform the discretization operation first, followed by the variation operation. This approach leads to considerable computation efficiency and simplicity.\",\"PeriodicalId\":236538,\"journal\":{\"name\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 16th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Element Models for Flexible Cosserat Solids
The application of the finite element method to the modeling of Cosserat solids is investigated in detail. In two- and three-dimensional elasticity problems, the nodal unknowns are the components of the displacement vector, which form a linear field. In contrast, when dealing with Cosserat solids, the nodal unknowns form the special Euclidean group SE(3), a nonlinear manifold. This observation has numerous implications on the implementation of the finite element method and raises numerous questions: (1) What is the most suitable representation of this nonlinear manifold? (2) How is it interpolated over one element? (3) How is the associated strain field interpolated? (4) What is the most efficient way to obtain the discrete equations of motion? All these questions are, of course intertwined. This paper shows that reliable schemes are available for the interpolation of the motion and curvature fields. The interpolated fields depend on relative nodal motions only, and hence, are both objective and tensorial. Because these schemes depend on relative nodal motions only, only local parameterization is required, thereby avoiding the occurrence of singularities. For Cosserat solids, it is preferable to perform the discretization operation first, followed by the variation operation. This approach leads to considerable computation efficiency and simplicity.