Nathaniel Bleier, Muhammad Husnain Mubarik, Srijan Chakraborty, S. Kishore, Rakesh Kumar
{"title":"重新思考可编程耳式处理器","authors":"Nathaniel Bleier, Muhammad Husnain Mubarik, Srijan Chakraborty, S. Kishore, Rakesh Kumar","doi":"10.1145/3470496.3527396","DOIUrl":null,"url":null,"abstract":"Earables such as earphones [15, 16, 73], hearing aids [28], and smart glasses [2, 14] are poised to be a prominent programmable computing platform in the future. In this paper, we ask the question: what kind of programmable hardware would be needed to support earable computing in future? To understand hardware requirements, we propose EarBench, a suite of representative emerging earable applications with diverse sensor-based inputs and computation requirements. Our analysis of EarBench applications shows that, on average, there is a 13.54×-3.97× performance gap between the computational needs of EarBench applications and the performance of the microprocessors that several of today's programmable earable SoCs are based on; more complex microprocessors have unacceptable energy efficiency for Earable applications. Our analysis also shows that EarBench applications are dominated by a small number of digital signal processing (DSP) and machine learning (ML)-based kernels that have significant computational similarity. We propose SpEaC --- a coarse-grained reconfigurable spatial architecture - as an energy-efficient programmable processor for earable applications. SpEaC targets earable applications efficiently using a) a reconfigurable fixed-point multiply-and-add augmented reduction tree-based substrate with support for vectorized complex operations that is optimized for the earable ML and DSP kernel code and b) a tightly coupled control core for executing other code (including non-matrix computation, or non-multiply or add operations in the earable DSP kernel code). Unlike other CGRAs that typically target general-purpose computations, SpEaC substrate is optimized for energy-efficient execution of the earable kernels at the expense of generality. Across all our kernels, SpEaC outperforms programmable cores modeled after M4, M7, A53, and HiFi4 DSP by 99.3×, 32.5×, 14.8×, and 9.8× respectively. At 63 mW in 28 nm, the energy efficiency benefits are 1.55 ×, 9.04×, 68.3 ×, and 32.7 × respectively; energy efficiency benefits are 15.7 × -- 1087 × over a low power Mali T628 MP6 GPU.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rethinking programmable earable processors\",\"authors\":\"Nathaniel Bleier, Muhammad Husnain Mubarik, Srijan Chakraborty, S. Kishore, Rakesh Kumar\",\"doi\":\"10.1145/3470496.3527396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earables such as earphones [15, 16, 73], hearing aids [28], and smart glasses [2, 14] are poised to be a prominent programmable computing platform in the future. In this paper, we ask the question: what kind of programmable hardware would be needed to support earable computing in future? To understand hardware requirements, we propose EarBench, a suite of representative emerging earable applications with diverse sensor-based inputs and computation requirements. Our analysis of EarBench applications shows that, on average, there is a 13.54×-3.97× performance gap between the computational needs of EarBench applications and the performance of the microprocessors that several of today's programmable earable SoCs are based on; more complex microprocessors have unacceptable energy efficiency for Earable applications. Our analysis also shows that EarBench applications are dominated by a small number of digital signal processing (DSP) and machine learning (ML)-based kernels that have significant computational similarity. We propose SpEaC --- a coarse-grained reconfigurable spatial architecture - as an energy-efficient programmable processor for earable applications. SpEaC targets earable applications efficiently using a) a reconfigurable fixed-point multiply-and-add augmented reduction tree-based substrate with support for vectorized complex operations that is optimized for the earable ML and DSP kernel code and b) a tightly coupled control core for executing other code (including non-matrix computation, or non-multiply or add operations in the earable DSP kernel code). Unlike other CGRAs that typically target general-purpose computations, SpEaC substrate is optimized for energy-efficient execution of the earable kernels at the expense of generality. Across all our kernels, SpEaC outperforms programmable cores modeled after M4, M7, A53, and HiFi4 DSP by 99.3×, 32.5×, 14.8×, and 9.8× respectively. At 63 mW in 28 nm, the energy efficiency benefits are 1.55 ×, 9.04×, 68.3 ×, and 32.7 × respectively; energy efficiency benefits are 15.7 × -- 1087 × over a low power Mali T628 MP6 GPU.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3527396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3527396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Earables such as earphones [15, 16, 73], hearing aids [28], and smart glasses [2, 14] are poised to be a prominent programmable computing platform in the future. In this paper, we ask the question: what kind of programmable hardware would be needed to support earable computing in future? To understand hardware requirements, we propose EarBench, a suite of representative emerging earable applications with diverse sensor-based inputs and computation requirements. Our analysis of EarBench applications shows that, on average, there is a 13.54×-3.97× performance gap between the computational needs of EarBench applications and the performance of the microprocessors that several of today's programmable earable SoCs are based on; more complex microprocessors have unacceptable energy efficiency for Earable applications. Our analysis also shows that EarBench applications are dominated by a small number of digital signal processing (DSP) and machine learning (ML)-based kernels that have significant computational similarity. We propose SpEaC --- a coarse-grained reconfigurable spatial architecture - as an energy-efficient programmable processor for earable applications. SpEaC targets earable applications efficiently using a) a reconfigurable fixed-point multiply-and-add augmented reduction tree-based substrate with support for vectorized complex operations that is optimized for the earable ML and DSP kernel code and b) a tightly coupled control core for executing other code (including non-matrix computation, or non-multiply or add operations in the earable DSP kernel code). Unlike other CGRAs that typically target general-purpose computations, SpEaC substrate is optimized for energy-efficient execution of the earable kernels at the expense of generality. Across all our kernels, SpEaC outperforms programmable cores modeled after M4, M7, A53, and HiFi4 DSP by 99.3×, 32.5×, 14.8×, and 9.8× respectively. At 63 mW in 28 nm, the energy efficiency benefits are 1.55 ×, 9.04×, 68.3 ×, and 32.7 × respectively; energy efficiency benefits are 15.7 × -- 1087 × over a low power Mali T628 MP6 GPU.