{"title":"一种基于设计的深度学习模型解决模糊分离的有效软件漏洞检测方法","authors":"Yuankun Liu, Yu Wang","doi":"10.1145/3598438.3598452","DOIUrl":null,"url":null,"abstract":"SVD(Software Vulnerability Detection) methods based on automated deep learning is critical in software safety, they are designable and promising. Several function-level deep-learning SVD methods achieve an accuracy of up to 0.97 on open-source C/C++ datasets. However, as vulnerable samples have a low proportion in existing open-source datasets, these methods suffer from high false negative rate, they fail to identify cross-domain software vulnerabilities for neglecting the imbalance and vague separation of existing datasets. This paper proposes a novel framework based on the SeqGAN and TextCNN to fix the vague separation of aggregated 7 open-source C/C++ datasets, therefore improving the performance of SVD. As a result, SeqGAN&TextCNN scores 0.9385 of F1 score, compared with merely adopting the TextCNN, the method achieves an increase of 119% in recall and 31.31% in precision, and from the separations plotted by t-SNE, SeqGAN effectively improves the separation of original datasets. SeqGAN&TextCNN detects more vulnerable samples with low false negative rate, the method’ s F1 score is 79.58% higher than that of leveraging the VulDeePecker on 7 open-source C/C++ datasets.","PeriodicalId":338722,"journal":{"name":"Proceedings of the 2022 3rd International Symposium on Big Data and Artificial Intelligence","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Software Vulnerability Detection Method Based On Devised Deep-Learning Model To Fix The Vague Separation\",\"authors\":\"Yuankun Liu, Yu Wang\",\"doi\":\"10.1145/3598438.3598452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SVD(Software Vulnerability Detection) methods based on automated deep learning is critical in software safety, they are designable and promising. Several function-level deep-learning SVD methods achieve an accuracy of up to 0.97 on open-source C/C++ datasets. However, as vulnerable samples have a low proportion in existing open-source datasets, these methods suffer from high false negative rate, they fail to identify cross-domain software vulnerabilities for neglecting the imbalance and vague separation of existing datasets. This paper proposes a novel framework based on the SeqGAN and TextCNN to fix the vague separation of aggregated 7 open-source C/C++ datasets, therefore improving the performance of SVD. As a result, SeqGAN&TextCNN scores 0.9385 of F1 score, compared with merely adopting the TextCNN, the method achieves an increase of 119% in recall and 31.31% in precision, and from the separations plotted by t-SNE, SeqGAN effectively improves the separation of original datasets. SeqGAN&TextCNN detects more vulnerable samples with low false negative rate, the method’ s F1 score is 79.58% higher than that of leveraging the VulDeePecker on 7 open-source C/C++ datasets.\",\"PeriodicalId\":338722,\"journal\":{\"name\":\"Proceedings of the 2022 3rd International Symposium on Big Data and Artificial Intelligence\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 3rd International Symposium on Big Data and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3598438.3598452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 3rd International Symposium on Big Data and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3598438.3598452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Effective Software Vulnerability Detection Method Based On Devised Deep-Learning Model To Fix The Vague Separation
SVD(Software Vulnerability Detection) methods based on automated deep learning is critical in software safety, they are designable and promising. Several function-level deep-learning SVD methods achieve an accuracy of up to 0.97 on open-source C/C++ datasets. However, as vulnerable samples have a low proportion in existing open-source datasets, these methods suffer from high false negative rate, they fail to identify cross-domain software vulnerabilities for neglecting the imbalance and vague separation of existing datasets. This paper proposes a novel framework based on the SeqGAN and TextCNN to fix the vague separation of aggregated 7 open-source C/C++ datasets, therefore improving the performance of SVD. As a result, SeqGAN&TextCNN scores 0.9385 of F1 score, compared with merely adopting the TextCNN, the method achieves an increase of 119% in recall and 31.31% in precision, and from the separations plotted by t-SNE, SeqGAN effectively improves the separation of original datasets. SeqGAN&TextCNN detects more vulnerable samples with low false negative rate, the method’ s F1 score is 79.58% higher than that of leveraging the VulDeePecker on 7 open-source C/C++ datasets.