基于肌电图和加速信号融合的呼吸模式识别

Dezhen Xiong, Daohui Zhang, Xingang Zhao, Yaqi Chu, Yiwen Zhao
{"title":"基于肌电图和加速信号融合的呼吸模式识别","authors":"Dezhen Xiong, Daohui Zhang, Xingang Zhao, Yaqi Chu, Yiwen Zhao","doi":"10.1109/ROBIO55434.2022.10012002","DOIUrl":null,"url":null,"abstract":"Breathing plays an important part for human beings in our daily life. Besides physical parameters like tidal volume or respiratory rate, biomedical signals like electromyography (EMG) signals can be a potential candidate for breathing activity monitoring. In this work, we propose a novel scheme for breathing activity pattern recognition by fusing features extracted from both EMG and acceleration signals. The EMG signals and acceleration signals during four breathing activities usually used in our daily life, including normal breathing, fast breathing, coughing, and deep breathing, are captured. The raw data is preprocessed, feature extracted by several hand-crafted features, and pattern classified. The performance of five EMG feature sets, five acceleration feature sets, and two machine learning algorithms are evaluated. The best result achieves an accuracy of 82.20% using an EMG feature and an acceleration feature with a support vector machine (SVM) classifier. It shows that fusing EMG and acceleration data is better than EMG signals alone or acceleration signals alone, and it also raises the problem of finding the best features to reach higher performance. To the best of our knowledge, this is the first time that EMG signals are combined with acceleration signals for human breathing activity classification. The proposed approach is effective and explores a new way of human breathing monitoring.","PeriodicalId":151112,"journal":{"name":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breathing Pattern Recognition By the Fusion of EMG and Acceleration Signals\",\"authors\":\"Dezhen Xiong, Daohui Zhang, Xingang Zhao, Yaqi Chu, Yiwen Zhao\",\"doi\":\"10.1109/ROBIO55434.2022.10012002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breathing plays an important part for human beings in our daily life. Besides physical parameters like tidal volume or respiratory rate, biomedical signals like electromyography (EMG) signals can be a potential candidate for breathing activity monitoring. In this work, we propose a novel scheme for breathing activity pattern recognition by fusing features extracted from both EMG and acceleration signals. The EMG signals and acceleration signals during four breathing activities usually used in our daily life, including normal breathing, fast breathing, coughing, and deep breathing, are captured. The raw data is preprocessed, feature extracted by several hand-crafted features, and pattern classified. The performance of five EMG feature sets, five acceleration feature sets, and two machine learning algorithms are evaluated. The best result achieves an accuracy of 82.20% using an EMG feature and an acceleration feature with a support vector machine (SVM) classifier. It shows that fusing EMG and acceleration data is better than EMG signals alone or acceleration signals alone, and it also raises the problem of finding the best features to reach higher performance. To the best of our knowledge, this is the first time that EMG signals are combined with acceleration signals for human breathing activity classification. The proposed approach is effective and explores a new way of human breathing monitoring.\",\"PeriodicalId\":151112,\"journal\":{\"name\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO55434.2022.10012002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO55434.2022.10012002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

呼吸在人类的日常生活中起着重要的作用。除了潮汐量或呼吸频率等物理参数外,肌电图(EMG)信号等生物医学信号也可能是呼吸活动监测的潜在候选者。在这项工作中,我们提出了一种新的呼吸活动模式识别方案,该方案融合了从肌电图和加速信号中提取的特征。采集日常生活中常用的正常呼吸、快速呼吸、咳嗽和深呼吸四种呼吸活动的肌电图信号和加速信号。对原始数据进行预处理,通过几个手工特征提取特征,并对模式进行分类。评估了五种肌电特征集、五种加速特征集和两种机器学习算法的性能。使用支持向量机(SVM)分类器结合肌电特征和加速特征,准确率达到82.20%。结果表明,融合肌电信号和加速度数据比单独使用肌电信号或单独使用加速度信号要好,但也提出了寻找最佳特征以达到更高性能的问题。据我们所知,这是第一次将肌电图信号与加速信号结合起来进行人类呼吸活动分类。该方法是有效的,为人体呼吸监测开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breathing Pattern Recognition By the Fusion of EMG and Acceleration Signals
Breathing plays an important part for human beings in our daily life. Besides physical parameters like tidal volume or respiratory rate, biomedical signals like electromyography (EMG) signals can be a potential candidate for breathing activity monitoring. In this work, we propose a novel scheme for breathing activity pattern recognition by fusing features extracted from both EMG and acceleration signals. The EMG signals and acceleration signals during four breathing activities usually used in our daily life, including normal breathing, fast breathing, coughing, and deep breathing, are captured. The raw data is preprocessed, feature extracted by several hand-crafted features, and pattern classified. The performance of five EMG feature sets, five acceleration feature sets, and two machine learning algorithms are evaluated. The best result achieves an accuracy of 82.20% using an EMG feature and an acceleration feature with a support vector machine (SVM) classifier. It shows that fusing EMG and acceleration data is better than EMG signals alone or acceleration signals alone, and it also raises the problem of finding the best features to reach higher performance. To the best of our knowledge, this is the first time that EMG signals are combined with acceleration signals for human breathing activity classification. The proposed approach is effective and explores a new way of human breathing monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Relative Displacement Measurement Based Affine Formation Tracking Control for Nonholonomic Kinematic Agents Steady Tracker: Tracking a Target Stably Using a Quadrotor Adaptive Super-Twisting sliding mode trajectory tracking control of underactuated unmanned surface vehicles based on prescribed performance* Design and Preliminary Evaluation of a Lightweight, Cable-Driven Hip Exoskeleton for Walking Assistance A PSO-based Resource Allocation and Task Assignment Approach for Real-Time Cloud Computing-based Robotic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1