基于中继的车用网络最优连通性覆盖区域模型

Kübra Ayvaz, Ercan Kurtarangil, B. Canberk
{"title":"基于中继的车用网络最优连通性覆盖区域模型","authors":"Kübra Ayvaz, Ercan Kurtarangil, B. Canberk","doi":"10.1109/BlackSeaCom.2014.6849024","DOIUrl":null,"url":null,"abstract":"The tradeoff between the connectivity and the coverage area has been a crucial challenge to investigate, in order to design effective vehicular network deployments in urban areas. Generally, in order to increase and scale the connectivity among vehicles, the radio transmission range needs to be extended. In both Vehicle-to-Vehicle (V2V) and Vehicle-to-Road Side Units (V2R) deployments, the increase in the number of Road Side Unit (RSU) and/or On Board Units (OBU) can also extend the network coverage area. However, these solutions can be possible with extra deployment costs. Beside that, due to the generic high mobility characteristics of vehicles, they cannot maintain a robust connection for a long time even though there are enough nodes to relay the transmission, leading a decrease in the network connectivity. To solve this challenge between the coverage area and the connectivity, in this paper, we propose a relay based coverage area model that uses already connected vehicles as a relay between disconnected vehicles and RSUs. Disconnected vehicles run the proposed neighbor discovery algorithm to setup a connection with already connected vehicles around their radio transmission range. Our algorithm builds dynamic neighbor maps and provides an optimal relay node to the disconnected vehicles. Therefore, the connectivity is increased neither changing the transmission range nor increasing the number of RSUs. Moreover, the proposed neighbor maps provide accurate location information, thus V2V and V2R connections can be built and sustained without the need of Global Positioning system (GPS) information, which can be misleading for many urban area scenarios due to the topological disorders. The through evaluations of the proposed algorithm show that our mechanism provides similar extension effect with enhancing of RSU transmission range two times.","PeriodicalId":427901,"journal":{"name":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A relay-based coverage area model for optimal connectivity in vehicular networks\",\"authors\":\"Kübra Ayvaz, Ercan Kurtarangil, B. Canberk\",\"doi\":\"10.1109/BlackSeaCom.2014.6849024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tradeoff between the connectivity and the coverage area has been a crucial challenge to investigate, in order to design effective vehicular network deployments in urban areas. Generally, in order to increase and scale the connectivity among vehicles, the radio transmission range needs to be extended. In both Vehicle-to-Vehicle (V2V) and Vehicle-to-Road Side Units (V2R) deployments, the increase in the number of Road Side Unit (RSU) and/or On Board Units (OBU) can also extend the network coverage area. However, these solutions can be possible with extra deployment costs. Beside that, due to the generic high mobility characteristics of vehicles, they cannot maintain a robust connection for a long time even though there are enough nodes to relay the transmission, leading a decrease in the network connectivity. To solve this challenge between the coverage area and the connectivity, in this paper, we propose a relay based coverage area model that uses already connected vehicles as a relay between disconnected vehicles and RSUs. Disconnected vehicles run the proposed neighbor discovery algorithm to setup a connection with already connected vehicles around their radio transmission range. Our algorithm builds dynamic neighbor maps and provides an optimal relay node to the disconnected vehicles. Therefore, the connectivity is increased neither changing the transmission range nor increasing the number of RSUs. Moreover, the proposed neighbor maps provide accurate location information, thus V2V and V2R connections can be built and sustained without the need of Global Positioning system (GPS) information, which can be misleading for many urban area scenarios due to the topological disorders. The through evaluations of the proposed algorithm show that our mechanism provides similar extension effect with enhancing of RSU transmission range two times.\",\"PeriodicalId\":427901,\"journal\":{\"name\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BlackSeaCom.2014.6849024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2014.6849024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了在城市地区设计有效的车辆网络部署,连接性和覆盖区域之间的权衡一直是研究的关键挑战。一般来说,为了增加和扩展车辆之间的连接,需要扩展无线电传输范围。在车辆对车辆(V2V)和车辆对道路侧单元(V2R)部署中,道路侧单元(RSU)和/或车载单元(OBU)数量的增加也可以扩大网络覆盖范围。然而,这些解决方案可能需要额外的部署成本。此外,由于车辆普遍具有高移动性的特点,即使有足够的节点中继传输,也无法长时间保持稳健的连接,导致网络连通性下降。为了解决覆盖区域和连接之间的这一挑战,本文提出了一种基于中继的覆盖区域模型,该模型使用已经连接的车辆作为未连接车辆和rsu之间的中继。断开连接的车辆运行提出的邻居发现算法,在其无线电传输范围内与已经连接的车辆建立连接。该算法建立动态邻居映射,并为失联车辆提供最优中继节点。因此,既不改变传输范围,也不增加rsu的数量,从而增加了连通性。此外,所提出的邻居地图提供了准确的位置信息,因此V2V和V2R连接可以在不需要全球定位系统(GPS)信息的情况下建立和维持,由于拓扑紊乱,GPS信息可能会误导许多城市区域场景。通过对算法的评估表明,我们的机制在将RSU传输距离提高两倍的情况下具有相似的扩展效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A relay-based coverage area model for optimal connectivity in vehicular networks
The tradeoff between the connectivity and the coverage area has been a crucial challenge to investigate, in order to design effective vehicular network deployments in urban areas. Generally, in order to increase and scale the connectivity among vehicles, the radio transmission range needs to be extended. In both Vehicle-to-Vehicle (V2V) and Vehicle-to-Road Side Units (V2R) deployments, the increase in the number of Road Side Unit (RSU) and/or On Board Units (OBU) can also extend the network coverage area. However, these solutions can be possible with extra deployment costs. Beside that, due to the generic high mobility characteristics of vehicles, they cannot maintain a robust connection for a long time even though there are enough nodes to relay the transmission, leading a decrease in the network connectivity. To solve this challenge between the coverage area and the connectivity, in this paper, we propose a relay based coverage area model that uses already connected vehicles as a relay between disconnected vehicles and RSUs. Disconnected vehicles run the proposed neighbor discovery algorithm to setup a connection with already connected vehicles around their radio transmission range. Our algorithm builds dynamic neighbor maps and provides an optimal relay node to the disconnected vehicles. Therefore, the connectivity is increased neither changing the transmission range nor increasing the number of RSUs. Moreover, the proposed neighbor maps provide accurate location information, thus V2V and V2R connections can be built and sustained without the need of Global Positioning system (GPS) information, which can be misleading for many urban area scenarios due to the topological disorders. The through evaluations of the proposed algorithm show that our mechanism provides similar extension effect with enhancing of RSU transmission range two times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of ITU threshold values on geostationary orbit efficiency in the Ku band Asymptotic and finite-length performance of irregular spatially-coupled codes Efficiency estimation of using MIMO technology in multi-hop networks On adding the social dimension to the Internet of Vehicles: Friendship and middleware A high throughput K-best detector on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1