Nunzio Cassavia, Pietro Dicosta, E. Masciari, D. Saccá
{"title":"利用大数据工具提升旅游体验","authors":"Nunzio Cassavia, Pietro Dicosta, E. Masciari, D. Saccá","doi":"10.1109/HPCSim.2015.7237089","DOIUrl":null,"url":null,"abstract":"Due to the emerging Big Data applications traditional data management techniques result inadequate in many real life scenarios. In particular, OLAP techniques require substantial changes in order to offer useful analysis due to huge amount of data to be analyzed and their velocity and variety. In this paper, we describe an approach for dynamic Big Data searching that based on data collected by a suitable storage system, enrich data in order to guide users through data exploration in a efficient and effective way.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improving tourist experience by Big Data tools\",\"authors\":\"Nunzio Cassavia, Pietro Dicosta, E. Masciari, D. Saccá\",\"doi\":\"10.1109/HPCSim.2015.7237089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the emerging Big Data applications traditional data management techniques result inadequate in many real life scenarios. In particular, OLAP techniques require substantial changes in order to offer useful analysis due to huge amount of data to be analyzed and their velocity and variety. In this paper, we describe an approach for dynamic Big Data searching that based on data collected by a suitable storage system, enrich data in order to guide users through data exploration in a efficient and effective way.\",\"PeriodicalId\":134009,\"journal\":{\"name\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2015.7237089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to the emerging Big Data applications traditional data management techniques result inadequate in many real life scenarios. In particular, OLAP techniques require substantial changes in order to offer useful analysis due to huge amount of data to be analyzed and their velocity and variety. In this paper, we describe an approach for dynamic Big Data searching that based on data collected by a suitable storage system, enrich data in order to guide users through data exploration in a efficient and effective way.