一种多维度自适应音乐自动分割方法

Cyril Gaudefroy, H. Papadopoulos, M. Kowalski
{"title":"一种多维度自适应音乐自动分割方法","authors":"Cyril Gaudefroy, H. Papadopoulos, M. Kowalski","doi":"10.1109/CBMI.2015.7153601","DOIUrl":null,"url":null,"abstract":"Music structure appears on a wide variety of temporal levels (notes, bars, phrases, etc). Its highest-level expression is therefore dependent on music's lower-level organization, especially beats and bars. We propose a method for automatic structure segmentation that uses musically meaningful information and is content-adaptive. It relies on a meter-adaptive signal representation that prevents from the use of empirical parameters. Moreover, our method is designed to combine multiple signal features to account for various musical dimensions. Finally, it also combines multiple structural principles that yield complementary results. The resulting algorithm proves to already outperform state-of-the-art methods, especially within small tolerance windows, and yet offers several encouraging improvement directions.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A multi-dimensional meter-adaptive method for automatic segmentation of music\",\"authors\":\"Cyril Gaudefroy, H. Papadopoulos, M. Kowalski\",\"doi\":\"10.1109/CBMI.2015.7153601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music structure appears on a wide variety of temporal levels (notes, bars, phrases, etc). Its highest-level expression is therefore dependent on music's lower-level organization, especially beats and bars. We propose a method for automatic structure segmentation that uses musically meaningful information and is content-adaptive. It relies on a meter-adaptive signal representation that prevents from the use of empirical parameters. Moreover, our method is designed to combine multiple signal features to account for various musical dimensions. Finally, it also combines multiple structural principles that yield complementary results. The resulting algorithm proves to already outperform state-of-the-art methods, especially within small tolerance windows, and yet offers several encouraging improvement directions.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

音乐结构出现在各种各样的时间层次上(音符、小节、乐句等)。因此,它的最高层次的表达依赖于音乐的较低层次的组织,特别是节拍和小节。我们提出了一种利用音乐意义信息和内容自适应的自动结构分割方法。它依赖于仪表自适应信号表示,防止使用经验参数。此外,我们的方法被设计成结合多个信号特征来考虑不同的音乐维度。最后,它还结合了多种结构原则,产生互补的结果。结果证明,该算法已经优于最先进的方法,特别是在小公差窗口内,并且提供了几个令人鼓舞的改进方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-dimensional meter-adaptive method for automatic segmentation of music
Music structure appears on a wide variety of temporal levels (notes, bars, phrases, etc). Its highest-level expression is therefore dependent on music's lower-level organization, especially beats and bars. We propose a method for automatic structure segmentation that uses musically meaningful information and is content-adaptive. It relies on a meter-adaptive signal representation that prevents from the use of empirical parameters. Moreover, our method is designed to combine multiple signal features to account for various musical dimensions. Finally, it also combines multiple structural principles that yield complementary results. The resulting algorithm proves to already outperform state-of-the-art methods, especially within small tolerance windows, and yet offers several encouraging improvement directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1