J. Nakase, K. Moriyama, K. Kiyokawa, M. Numao, M. Oyama, S. Kurihara
{"title":"基于生命感知的有效唤醒交互学习系统","authors":"J. Nakase, K. Moriyama, K. Kiyokawa, M. Numao, M. Oyama, S. Kurihara","doi":"10.1109/SAS.2013.6493566","DOIUrl":null,"url":null,"abstract":"In ambient information systems, not only extracting human behavior with a sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper, we propose a reinforcement learning methodology for acquiring suitable interaction for each person's daily behavior. This time, we used vital sensors to detect and classify a user's condition. In an experiment, we show the feasibility of the proposed methodology.","PeriodicalId":309610,"journal":{"name":"2013 IEEE Sensors Applications Symposium Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective awaking interaction learning system that uses vital sensing\",\"authors\":\"J. Nakase, K. Moriyama, K. Kiyokawa, M. Numao, M. Oyama, S. Kurihara\",\"doi\":\"10.1109/SAS.2013.6493566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In ambient information systems, not only extracting human behavior with a sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper, we propose a reinforcement learning methodology for acquiring suitable interaction for each person's daily behavior. This time, we used vital sensors to detect and classify a user's condition. In an experiment, we show the feasibility of the proposed methodology.\",\"PeriodicalId\":309610,\"journal\":{\"name\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Sensors Applications Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2013.6493566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Sensors Applications Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2013.6493566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective awaking interaction learning system that uses vital sensing
In ambient information systems, not only extracting human behavior with a sensor network but also adaptive autonomous interaction between the environment and humans is an important function. In this paper, we propose a reinforcement learning methodology for acquiring suitable interaction for each person's daily behavior. This time, we used vital sensors to detect and classify a user's condition. In an experiment, we show the feasibility of the proposed methodology.