{"title":"基于实编码遗传算法的温室温度自整定模糊逻辑控制","authors":"Fang Xu, Jiaoliao Chen, Libin Zhang, Hongwu Zhan","doi":"10.1109/ICARCV.2006.345183","DOIUrl":null,"url":null,"abstract":"The greenhouse temperature model is built based on the balance of the energy. A new real-coded genetic algorithm (GA) for self-tuning fuzzy logic control (FLC) of greenhouse temperature is proposed, in which, an arithmetical crossover operator, a ranking-based reproduction operator and a non-uniform mutation operator are adopted. The Gaussian input membership functions for the error and the change-in-error of the temperature of FLC is optimized by GA in terms of the root-mean-square error (RMSE) with setpoint and input energy. Compared with the basic fuzzy control, the tuned FLC gives better performance in terms of improving control precision and saving energy","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm\",\"authors\":\"Fang Xu, Jiaoliao Chen, Libin Zhang, Hongwu Zhan\",\"doi\":\"10.1109/ICARCV.2006.345183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The greenhouse temperature model is built based on the balance of the energy. A new real-coded genetic algorithm (GA) for self-tuning fuzzy logic control (FLC) of greenhouse temperature is proposed, in which, an arithmetical crossover operator, a ranking-based reproduction operator and a non-uniform mutation operator are adopted. The Gaussian input membership functions for the error and the change-in-error of the temperature of FLC is optimized by GA in terms of the root-mean-square error (RMSE) with setpoint and input energy. Compared with the basic fuzzy control, the tuned FLC gives better performance in terms of improving control precision and saving energy\",\"PeriodicalId\":415827,\"journal\":{\"name\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2006.345183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-tuning Fuzzy Logic Control of Greenhouse Temperature using Real-coded Genetic Algorithm
The greenhouse temperature model is built based on the balance of the energy. A new real-coded genetic algorithm (GA) for self-tuning fuzzy logic control (FLC) of greenhouse temperature is proposed, in which, an arithmetical crossover operator, a ranking-based reproduction operator and a non-uniform mutation operator are adopted. The Gaussian input membership functions for the error and the change-in-error of the temperature of FLC is optimized by GA in terms of the root-mean-square error (RMSE) with setpoint and input energy. Compared with the basic fuzzy control, the tuned FLC gives better performance in terms of improving control precision and saving energy