基于众包测试流的聚类

Siyuan Shen, Hao Lian, Tieke He, Zhenyu Chen
{"title":"基于众包测试流的聚类","authors":"Siyuan Shen, Hao Lian, Tieke He, Zhenyu Chen","doi":"10.1109/WISA.2017.47","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a clustering framework to analyze the log files generated along crowdsourcing mobile application testing. Our object is to automatically identify the type of testing work that the worker is performing as to reduce the work of developers clustering the test reports. By taking full data information of the log files, we establish the hierarchy of the testing data. Through the application of data processing and stream clustering methods, we accomplish the static mining and dynamic division of the test stream data. Experiments on a crowdsourcing mobile application testing dataset the efficacy of our approach.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering on the Stream of Crowdsourced Testing\",\"authors\":\"Siyuan Shen, Hao Lian, Tieke He, Zhenyu Chen\",\"doi\":\"10.1109/WISA.2017.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a clustering framework to analyze the log files generated along crowdsourcing mobile application testing. Our object is to automatically identify the type of testing work that the worker is performing as to reduce the work of developers clustering the test reports. By taking full data information of the log files, we establish the hierarchy of the testing data. Through the application of data processing and stream clustering methods, we accomplish the static mining and dynamic division of the test stream data. Experiments on a crowdsourcing mobile application testing dataset the efficacy of our approach.\",\"PeriodicalId\":204706,\"journal\":{\"name\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th Web Information Systems and Applications Conference (WISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2017.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个聚类框架来分析众包移动应用测试过程中产生的日志文件。我们的目标是自动识别工作人员正在执行的测试工作的类型,以减少开发人员聚集测试报告的工作。通过获取日志文件的完整数据信息,建立了测试数据的层次结构。通过应用数据处理和流聚类方法,完成了测试流数据的静态挖掘和动态划分。在一个众包移动应用测试数据集上的实验证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering on the Stream of Crowdsourced Testing
In this paper, we propose a clustering framework to analyze the log files generated along crowdsourcing mobile application testing. Our object is to automatically identify the type of testing work that the worker is performing as to reduce the work of developers clustering the test reports. By taking full data information of the log files, we establish the hierarchy of the testing data. Through the application of data processing and stream clustering methods, we accomplish the static mining and dynamic division of the test stream data. Experiments on a crowdsourcing mobile application testing dataset the efficacy of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1