贝叶斯非参数语言模型

Ying-Lang Chang, Jen-Tzung Chien
{"title":"贝叶斯非参数语言模型","authors":"Ying-Lang Chang, Jen-Tzung Chien","doi":"10.1109/ISCSLP.2012.6423460","DOIUrl":null,"url":null,"abstract":"Backoff smoothing and topic modeling are crucial issues in n-gram language model. This paper presents a Bayesian non-parametric learning approach to tackle these two issues. We develop a topic-based language model where the numbers of topics and n-grams are automatically determined from data. To cope with this model selection problem, we introduce the nonparametric priors for topics and backoff n-grams. The infinite language models are constructed through the hierarchical Dirichlet process compound Pitman-Yor (PY) process. We develop the topic-based hierarchical PY language model (THPY-LM) with power-law behavior. This model can be simplified to the hierarchical PY (HPY) LM by disregarding the topic information and also the modified Kneser-Ney (MKN) LM by further disregarding the Bayesian treatment. In the experiments, the proposed THPY-LM outperforms state-of-art methods using MKN-LM and HPY-LM.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian nonparametric language models\",\"authors\":\"Ying-Lang Chang, Jen-Tzung Chien\",\"doi\":\"10.1109/ISCSLP.2012.6423460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backoff smoothing and topic modeling are crucial issues in n-gram language model. This paper presents a Bayesian non-parametric learning approach to tackle these two issues. We develop a topic-based language model where the numbers of topics and n-grams are automatically determined from data. To cope with this model selection problem, we introduce the nonparametric priors for topics and backoff n-grams. The infinite language models are constructed through the hierarchical Dirichlet process compound Pitman-Yor (PY) process. We develop the topic-based hierarchical PY language model (THPY-LM) with power-law behavior. This model can be simplified to the hierarchical PY (HPY) LM by disregarding the topic information and also the modified Kneser-Ney (MKN) LM by further disregarding the Bayesian treatment. In the experiments, the proposed THPY-LM outperforms state-of-art methods using MKN-LM and HPY-LM.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

后退平滑和主题建模是n-gram语言模型中的关键问题。本文提出了一种贝叶斯非参数学习方法来解决这两个问题。我们开发了一个基于主题的语言模型,其中主题的数量和n-gram是自动从数据中确定的。为了解决这一模型选择问题,我们引入了主题和回退n-图的非参数先验。通过分层狄利克雷过程复合Pitman-Yor (PY)过程构造无限语言模型。我们开发了具有幂律行为的基于主题的层次语言模型(THPY-LM)。该模型可以通过忽略主题信息而简化为层次模型(HPY),也可以通过进一步忽略贝叶斯处理而简化为改进的Kneser-Ney模型(MKN)。在实验中,所提出的THPY-LM优于目前使用MKN-LM和HPY-LM的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian nonparametric language models
Backoff smoothing and topic modeling are crucial issues in n-gram language model. This paper presents a Bayesian non-parametric learning approach to tackle these two issues. We develop a topic-based language model where the numbers of topics and n-grams are automatically determined from data. To cope with this model selection problem, we introduce the nonparametric priors for topics and backoff n-grams. The infinite language models are constructed through the hierarchical Dirichlet process compound Pitman-Yor (PY) process. We develop the topic-based hierarchical PY language model (THPY-LM) with power-law behavior. This model can be simplified to the hierarchical PY (HPY) LM by disregarding the topic information and also the modified Kneser-Ney (MKN) LM by further disregarding the Bayesian treatment. In the experiments, the proposed THPY-LM outperforms state-of-art methods using MKN-LM and HPY-LM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation Effects of excitation spread on the intelligibility of Mandarin speech in cochlear implant simulations A comparative study of fMPE and RDLT approaches to LVCSR Keyword-specific normalization based keyword spotting for spontaneous speech A unified trajectory tiling approach to high quality TTS and cross-lingual voice transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1