六边形sixge1 - x1是一种直接间隙半导体

C. Broderick
{"title":"六边形sixge1 - x1是一种直接间隙半导体","authors":"C. Broderick","doi":"10.1109/SUM53465.2022.9858220","DOIUrl":null,"url":null,"abstract":"The band gap of germanium (Ge) is “weakly” indirect, with the $\\mathrm{L}_{6c}$ conduction band (CB) minimum lying only $\\approx 150\\text{meV}$ below the zone-center $\\Gamma_{7c}$ CB edge in energy. This has stimulated significant interest in engineering the band structure of Ge, with the aim of realizing a direct-gap group-IV semiconductor compatible with established complementary metal-oxide-semiconductor fabrication and processing infrastructure. Recent advances in nanowire fabrication now allow growth of Ge in the metastable lonsdaleite (“hexagonal diamond”) phase, reproducibly and with high crystalline quality. In its lonsdaleite allotrope Ge is a direct- and narrow-gap semiconductor, in which the zone-center $\\mathrm{T}_{8\\mathrm{c}}$ CB minimum originates via back-folding of the $\\mathrm{L}_{6c}$ CB minimum of the conventional cubic (diamond) phase. Here, we analyze the electronic structure evolution in direct-gap lonsdaleite SixGe1-x alloys from first principles, using a combination of alloy supercell calculations and zone unfolding. We confirm the Si composition range $x\\leq$ 25 % across which SixGe1-x possesses a direct band gap, quantify the impact of alloy-induced band hybridization on the inter-band optical matrix elements, and describe qualitatively the consequences of the alloy band structure for carrier recombination.","PeriodicalId":371464,"journal":{"name":"2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexagonal SixGe1-xas a direct-gap semiconductor\",\"authors\":\"C. Broderick\",\"doi\":\"10.1109/SUM53465.2022.9858220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The band gap of germanium (Ge) is “weakly” indirect, with the $\\\\mathrm{L}_{6c}$ conduction band (CB) minimum lying only $\\\\approx 150\\\\text{meV}$ below the zone-center $\\\\Gamma_{7c}$ CB edge in energy. This has stimulated significant interest in engineering the band structure of Ge, with the aim of realizing a direct-gap group-IV semiconductor compatible with established complementary metal-oxide-semiconductor fabrication and processing infrastructure. Recent advances in nanowire fabrication now allow growth of Ge in the metastable lonsdaleite (“hexagonal diamond”) phase, reproducibly and with high crystalline quality. In its lonsdaleite allotrope Ge is a direct- and narrow-gap semiconductor, in which the zone-center $\\\\mathrm{T}_{8\\\\mathrm{c}}$ CB minimum originates via back-folding of the $\\\\mathrm{L}_{6c}$ CB minimum of the conventional cubic (diamond) phase. Here, we analyze the electronic structure evolution in direct-gap lonsdaleite SixGe1-x alloys from first principles, using a combination of alloy supercell calculations and zone unfolding. We confirm the Si composition range $x\\\\leq$ 25 % across which SixGe1-x possesses a direct band gap, quantify the impact of alloy-induced band hybridization on the inter-band optical matrix elements, and describe qualitatively the consequences of the alloy band structure for carrier recombination.\",\"PeriodicalId\":371464,\"journal\":{\"name\":\"2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUM53465.2022.9858220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUM53465.2022.9858220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锗(Ge)的带隙是“弱”间接的,其$\mathrm{L}_{6c}$导带(CB)最小值在能量上仅位于$\approx 150\text{meV}$区中心$\Gamma_{7c}$ CB边缘以下。这激发了人们对工程锗带结构的极大兴趣,目的是实现与已建立的互补金属氧化物半导体制造和加工基础设施兼容的直接间隙族iv半导体。纳米线制造的最新进展现在允许在亚稳的长方金刚石(“六方金刚石”)相中生长Ge,可重复且具有高结晶质量。在其lonsdaleite同素异形体中,Ge是一种直接窄隙半导体,其中区域中心$\mathrm{T}_{8\mathrm{c}}$ CB最小值源于传统立方(金刚石)相$\mathrm{L}_{6c}$ CB最小值的反向折叠。本文采用合金超级单体计算和区域展开相结合的方法,从第一性原理出发,分析了直接间隙lonsdaleite SixGe1-x合金的电子结构演变。我们确认Si成分范围$x\leq$ 25 % across which SixGe1-x possesses a direct band gap, quantify the impact of alloy-induced band hybridization on the inter-band optical matrix elements, and describe qualitatively the consequences of the alloy band structure for carrier recombination.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hexagonal SixGe1-xas a direct-gap semiconductor
The band gap of germanium (Ge) is “weakly” indirect, with the $\mathrm{L}_{6c}$ conduction band (CB) minimum lying only $\approx 150\text{meV}$ below the zone-center $\Gamma_{7c}$ CB edge in energy. This has stimulated significant interest in engineering the band structure of Ge, with the aim of realizing a direct-gap group-IV semiconductor compatible with established complementary metal-oxide-semiconductor fabrication and processing infrastructure. Recent advances in nanowire fabrication now allow growth of Ge in the metastable lonsdaleite (“hexagonal diamond”) phase, reproducibly and with high crystalline quality. In its lonsdaleite allotrope Ge is a direct- and narrow-gap semiconductor, in which the zone-center $\mathrm{T}_{8\mathrm{c}}$ CB minimum originates via back-folding of the $\mathrm{L}_{6c}$ CB minimum of the conventional cubic (diamond) phase. Here, we analyze the electronic structure evolution in direct-gap lonsdaleite SixGe1-x alloys from first principles, using a combination of alloy supercell calculations and zone unfolding. We confirm the Si composition range $x\leq$ 25 % across which SixGe1-x possesses a direct band gap, quantify the impact of alloy-induced band hybridization on the inter-band optical matrix elements, and describe qualitatively the consequences of the alloy band structure for carrier recombination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential and prospects of terahertz technology for the food applications Dynamic linear mode coupling effects in multi mode fibers for mode division multiplexed transmission (invited) Ultrastable Frequency and Timing for Future Telecom Networks GeSn Laser Technologies for Integrated Photonics Phase and Amplitude Trimming of Photonic Integrated Circuits Using Phase Change Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1