用于低功耗物联网系统的智能能源管理电源单元

G. Filios, Ioannis Katsidimas, S. Nikoletseas, Alexandros Souroulagkas, P. Spirakis, Ioannis Tsenempis
{"title":"用于低功耗物联网系统的智能能源管理电源单元","authors":"G. Filios, Ioannis Katsidimas, S. Nikoletseas, Alexandros Souroulagkas, P. Spirakis, Ioannis Tsenempis","doi":"10.1109/DCOSS49796.2020.00045","DOIUrl":null,"url":null,"abstract":"A lot of research has been contributed towards smart energy harvesting, efficient energy management and energy storage/supply capabilities, as they are considered a major bottleneck in Wireless Sensor Networks (WSNs). Similarly, there is an extreme interest to design new algorithms and protocols regarding energy harvesting prediction, load's energy consuming profiling, etc. Although those techniques improve energy efficiency, it still remains to solve the fundamental problem of energy provisioning in a more practical, real-life manner, as the majority of the hardware solutions choose to produce simple and robust implementations. In this paper, we present a smart energy management platform for low-power IoT systems that implements both energy harvesting and storage technologies but dynamically sets different power modes based on online monitoring measurements and energy harvesting prediction. With respect to power specifications our solution succeeds to both supply and inform the load system for future energy provisioning capability. Thus, our prototype can be characterised as a load agnostic device w.r.t. specification values, that can adjust to different conditions and use cases towards an effective system energy provisioning.","PeriodicalId":198837,"journal":{"name":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A smart energy management power supply unit for low-power IoT systems\",\"authors\":\"G. Filios, Ioannis Katsidimas, S. Nikoletseas, Alexandros Souroulagkas, P. Spirakis, Ioannis Tsenempis\",\"doi\":\"10.1109/DCOSS49796.2020.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A lot of research has been contributed towards smart energy harvesting, efficient energy management and energy storage/supply capabilities, as they are considered a major bottleneck in Wireless Sensor Networks (WSNs). Similarly, there is an extreme interest to design new algorithms and protocols regarding energy harvesting prediction, load's energy consuming profiling, etc. Although those techniques improve energy efficiency, it still remains to solve the fundamental problem of energy provisioning in a more practical, real-life manner, as the majority of the hardware solutions choose to produce simple and robust implementations. In this paper, we present a smart energy management platform for low-power IoT systems that implements both energy harvesting and storage technologies but dynamically sets different power modes based on online monitoring measurements and energy harvesting prediction. With respect to power specifications our solution succeeds to both supply and inform the load system for future energy provisioning capability. Thus, our prototype can be characterised as a load agnostic device w.r.t. specification values, that can adjust to different conditions and use cases towards an effective system energy provisioning.\",\"PeriodicalId\":198837,\"journal\":{\"name\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS49796.2020.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS49796.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能能量收集、高效能量管理和能量存储/供应能力是无线传感器网络(WSNs)的主要瓶颈,因此许多研究都对这些问题做出了贡献。同样,人们对设计关于能量收集预测、负载能耗分析等的新算法和协议也非常感兴趣。尽管这些技术提高了能源效率,但由于大多数硬件解决方案选择产生简单而健壮的实现,因此仍然需要以更实际、更现实的方式解决能源供应的基本问题。在本文中,我们提出了一个用于低功耗物联网系统的智能能源管理平台,该平台实现了能量收集和存储技术,但基于在线监测测量和能量收集预测动态设置不同的功率模式。在电源规格方面,我们的解决方案成功地提供并通知负载系统未来的能源供应能力。因此,我们的原型可以被描述为负载不可知设备w.r.t.规格值,它可以调整到不同的条件和用例,以实现有效的系统能量供应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A smart energy management power supply unit for low-power IoT systems
A lot of research has been contributed towards smart energy harvesting, efficient energy management and energy storage/supply capabilities, as they are considered a major bottleneck in Wireless Sensor Networks (WSNs). Similarly, there is an extreme interest to design new algorithms and protocols regarding energy harvesting prediction, load's energy consuming profiling, etc. Although those techniques improve energy efficiency, it still remains to solve the fundamental problem of energy provisioning in a more practical, real-life manner, as the majority of the hardware solutions choose to produce simple and robust implementations. In this paper, we present a smart energy management platform for low-power IoT systems that implements both energy harvesting and storage technologies but dynamically sets different power modes based on online monitoring measurements and energy harvesting prediction. With respect to power specifications our solution succeeds to both supply and inform the load system for future energy provisioning capability. Thus, our prototype can be characterised as a load agnostic device w.r.t. specification values, that can adjust to different conditions and use cases towards an effective system energy provisioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Health Information Exchange with Blockchain amid Covid-19-like Pandemics Instrumentation for Cooking Pattern Analysis in Peri-Urban Nepal Predictive and Explainable Machine Learning for Industrial Internet of Things Applications Message from the IoTI4 2020 Workshop Chairs An Agnostic Data-Driven Approach to Predict Stoppages of Industrial Packing Machine in Near
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1