基于云计算的MapReduce计算能力演绎体系

Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh
{"title":"基于云计算的MapReduce计算能力演绎体系","authors":"Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh","doi":"10.1109/PDCAT.2017.00067","DOIUrl":null,"url":null,"abstract":"MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.","PeriodicalId":119197,"journal":{"name":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation Capability Deduction Architecture for MapReduce on Cloud Computing\",\"authors\":\"Tzu-Chi Huang, Kuo-Chih Chu, Guo-Hao Huang, Yan-Chen Shen, C. Shieh\",\"doi\":\"10.1109/PDCAT.2017.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.\",\"PeriodicalId\":119197,\"journal\":{\"name\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2017.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2017.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

MapReduce逐渐成为云计算应用程序事实上的编程标准。但是,MapReduce需要云管理员手动配置Map和Reduce任务的槽位号等运行时系统参数,才能获得最佳性能。由于手工配置存在性能下降的风险,MapReduce应该利用本文提出的CCDA (computational Capability Deduction Architecture)来避免这种风险。MapReduce可以使用CCDA帮助运行时系统在运行时将适当数量的任务分配到云中的计算机上,而无需云管理员进行任何手动配置。根据本文的实验观察,在倒排索引(Inverted Index)、字数统计(Word Count)等通常需要在云计算上处理大数据的数据密集型应用中,MapReduce在CCDA的帮助下可以获得很大的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation Capability Deduction Architecture for MapReduce on Cloud Computing
MapReduce gradually becomes the de facto programming standard of applications on cloud computing. However, MapReduce needs a cloud administrator to manually configure parameters of the run-time system such as slot numbers for Map and Reduce tasks in order to get the best performance. Because the manual configuration has a risk of performance degradation, MapReduce should utilize the Computation Capability Deduction Architecture (CCDA) proposed in this paper to avoid the risk. MapReduce can use CCDA to help the run-time system to distribute appropriate numbers of tasks over computers in a cloud at run time without any manual configuration made by a cloud administrator. According to experiment observations in this paper, MapReduce can get great performance improvement with the help of CCDA in data-intensive applications such as Inverted Index and Word Count that are usually required to process big data on cloud computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementing Algorithmic Skeletons with Bulk Synchronous Parallel ML Managing Bytecode and ISA Compatibility with an Enhanced Toolchain Improved Online Algorithms for One-Dimensional BinPacking with Advice A Case Study in Higher Education Domain Based on a Prototype for Business Process Models Improvement: BPMoQualAssess NMFDIV: A Nonnegative Matrix Factorization Approach for Search Result Diversification on Attributed Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1