Y. Gizatdinova, O. Špakov, O. Tuisku, M. Turk, Veikko Surakka
{"title":"凝视和头指向免提文本输入:适用于超小型虚拟键盘","authors":"Y. Gizatdinova, O. Špakov, O. Tuisku, M. Turk, Veikko Surakka","doi":"10.1145/3204493.3204539","DOIUrl":null,"url":null,"abstract":"With the proliferation of small-screen computing devices, there has been a continuous trend in reducing the size of interface elements. In virtual keyboards, this allows for more characters in a layout and additional function widgets. However, vision-based interfaces (VBIs) have only been investigated with large (e.g., full-screen) keyboards. To understand how key size reduction affects the accuracy and speed performance of text entry VBIs, we evaluated gaze-controlled VBI (g-VBI) and head-controlled VBI (h-VBI) with unconventionally small (0.4°, 0.6°, 0.8° and 1°) keys. Novices (N = 26) yielded significantly more accurate and fast text production with h-VBI than with g-VBI, while the performance of experts (N = 12) for both VBIs was nearly equal when a 0.8--1° key size was used. We discuss advantages and limitations of the VBIs for typing with ultra-small keyboards and emphasize relevant factors for designing such systems.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Gaze and head pointing for hands-free text entry: applicability to ultra-small virtual keyboards\",\"authors\":\"Y. Gizatdinova, O. Špakov, O. Tuisku, M. Turk, Veikko Surakka\",\"doi\":\"10.1145/3204493.3204539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the proliferation of small-screen computing devices, there has been a continuous trend in reducing the size of interface elements. In virtual keyboards, this allows for more characters in a layout and additional function widgets. However, vision-based interfaces (VBIs) have only been investigated with large (e.g., full-screen) keyboards. To understand how key size reduction affects the accuracy and speed performance of text entry VBIs, we evaluated gaze-controlled VBI (g-VBI) and head-controlled VBI (h-VBI) with unconventionally small (0.4°, 0.6°, 0.8° and 1°) keys. Novices (N = 26) yielded significantly more accurate and fast text production with h-VBI than with g-VBI, while the performance of experts (N = 12) for both VBIs was nearly equal when a 0.8--1° key size was used. We discuss advantages and limitations of the VBIs for typing with ultra-small keyboards and emphasize relevant factors for designing such systems.\",\"PeriodicalId\":237808,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3204493.3204539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3204539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gaze and head pointing for hands-free text entry: applicability to ultra-small virtual keyboards
With the proliferation of small-screen computing devices, there has been a continuous trend in reducing the size of interface elements. In virtual keyboards, this allows for more characters in a layout and additional function widgets. However, vision-based interfaces (VBIs) have only been investigated with large (e.g., full-screen) keyboards. To understand how key size reduction affects the accuracy and speed performance of text entry VBIs, we evaluated gaze-controlled VBI (g-VBI) and head-controlled VBI (h-VBI) with unconventionally small (0.4°, 0.6°, 0.8° and 1°) keys. Novices (N = 26) yielded significantly more accurate and fast text production with h-VBI than with g-VBI, while the performance of experts (N = 12) for both VBIs was nearly equal when a 0.8--1° key size was used. We discuss advantages and limitations of the VBIs for typing with ultra-small keyboards and emphasize relevant factors for designing such systems.