基于速度剖面的公路网分段

Russel Aziz, Manav Kedia, Soham Dan, S. Sarkar, Sudeshna Mitra, Pabitra Mitra
{"title":"基于速度剖面的公路网分段","authors":"Russel Aziz, Manav Kedia, Soham Dan, S. Sarkar, Sudeshna Mitra, Pabitra Mitra","doi":"10.1109/ITSC.2015.469","DOIUrl":null,"url":null,"abstract":"GPS Data from vehicles making trips on the highway are a valuable source of information for highway data analytics. In this article we propose an algorithm for segmenting the highway network into homogenous stretches in terms of vehicle speed profiles. We have GPS data of trucks plying across India, transmitted at an interval of 10 minutes, for thousands of trips. We identify break-points for individual trips and then cluster those break-points to obtain highway segment ends. We calculate the average velocity of vehicles traversing the regions between these segment ends, i.e. the highway segments. Then we merge the segments using an iterative minimum difference merging algorithm. The segments obtained thus are meaningful and may be utilized in optimal trip planning, infrastructure management and other decision making tasks.","PeriodicalId":124818,"journal":{"name":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Segmenting Highway Network Based on Speed Profiles\",\"authors\":\"Russel Aziz, Manav Kedia, Soham Dan, S. Sarkar, Sudeshna Mitra, Pabitra Mitra\",\"doi\":\"10.1109/ITSC.2015.469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPS Data from vehicles making trips on the highway are a valuable source of information for highway data analytics. In this article we propose an algorithm for segmenting the highway network into homogenous stretches in terms of vehicle speed profiles. We have GPS data of trucks plying across India, transmitted at an interval of 10 minutes, for thousands of trips. We identify break-points for individual trips and then cluster those break-points to obtain highway segment ends. We calculate the average velocity of vehicles traversing the regions between these segment ends, i.e. the highway segments. Then we merge the segments using an iterative minimum difference merging algorithm. The segments obtained thus are meaningful and may be utilized in optimal trip planning, infrastructure management and other decision making tasks.\",\"PeriodicalId\":124818,\"journal\":{\"name\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 18th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2015.469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 18th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2015.469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在高速公路上行驶的车辆的数据是高速公路数据分析的宝贵信息来源。在这篇文章中,我们提出了一种算法分割成均匀延伸的公路网车辆的速度剖面。我们有卡车在印度各地行驶的GPS数据,每隔10分钟传输一次,记录了数千次的行程。我们确定单个行程的断点,然后将这些断点聚类以获得高速公路段的终点。我们计算车辆穿过这些路段端点之间区域的平均速度,即公路路段。然后使用迭代最小差分归并算法对片段进行归并。由此得到的路段是有意义的,可用于最优行程规划、基础设施管理和其他决策任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmenting Highway Network Based on Speed Profiles
GPS Data from vehicles making trips on the highway are a valuable source of information for highway data analytics. In this article we propose an algorithm for segmenting the highway network into homogenous stretches in terms of vehicle speed profiles. We have GPS data of trucks plying across India, transmitted at an interval of 10 minutes, for thousands of trips. We identify break-points for individual trips and then cluster those break-points to obtain highway segment ends. We calculate the average velocity of vehicles traversing the regions between these segment ends, i.e. the highway segments. Then we merge the segments using an iterative minimum difference merging algorithm. The segments obtained thus are meaningful and may be utilized in optimal trip planning, infrastructure management and other decision making tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Area Traffic Prediction Using High Definition Maps and LiDAR for Safe Driving Assist ZEM 2 All Project (Zero Emission Mobility to All) Economic Analysis Based on the Interrelationships of the OLEV System Components Intelligent Driver Monitoring Based on Physiological Sensor Signals: Application Using Camera On Identifying Dynamic Intersections in Large Cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1