{"title":"具有初始应力的圆柱形层状压电结构中的SH波","authors":"Jianke Du, Xiaoying Jin, Ji Wang, Yun-ying Zhou","doi":"10.1109/FREQ.2006.275358","DOIUrl":null,"url":null,"abstract":"Propagation of SH waves in a circular cylindrical layered piezoelectric structure with initial stress is investigated analytically, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions are assumed that the displacements, shear stress, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The electrically open and short conditions at cylindrical surface are adopted to solve the problem. The phase velocity is numerically calculated for the electric open and short cases, respectively, for different thickness of the layer and wave number. The effect of the initial stress on the phase velocity and the electromechanical coupling factor are discussed in detail for piezoelectric ceramics PZT-5H. The authors find that the initial stress has an important effect on the SH wave propagation in a circular cylindrical layered structure","PeriodicalId":445945,"journal":{"name":"2006 IEEE International Frequency Control Symposium and Exposition","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SH Waves in a Circular Cylindrical Layered Piezoelectric Structure with Initial Stress\",\"authors\":\"Jianke Du, Xiaoying Jin, Ji Wang, Yun-ying Zhou\",\"doi\":\"10.1109/FREQ.2006.275358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Propagation of SH waves in a circular cylindrical layered piezoelectric structure with initial stress is investigated analytically, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions are assumed that the displacements, shear stress, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The electrically open and short conditions at cylindrical surface are adopted to solve the problem. The phase velocity is numerically calculated for the electric open and short cases, respectively, for different thickness of the layer and wave number. The effect of the initial stress on the phase velocity and the electromechanical coupling factor are discussed in detail for piezoelectric ceramics PZT-5H. The authors find that the initial stress has an important effect on the SH wave propagation in a circular cylindrical layered structure\",\"PeriodicalId\":445945,\"journal\":{\"name\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Frequency Control Symposium and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FREQ.2006.275358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Frequency Control Symposium and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FREQ.2006.275358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SH Waves in a Circular Cylindrical Layered Piezoelectric Structure with Initial Stress
Propagation of SH waves in a circular cylindrical layered piezoelectric structure with initial stress is investigated analytically, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions are assumed that the displacements, shear stress, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The electrically open and short conditions at cylindrical surface are adopted to solve the problem. The phase velocity is numerically calculated for the electric open and short cases, respectively, for different thickness of the layer and wave number. The effect of the initial stress on the phase velocity and the electromechanical coupling factor are discussed in detail for piezoelectric ceramics PZT-5H. The authors find that the initial stress has an important effect on the SH wave propagation in a circular cylindrical layered structure