区域高效超导一元CNN加速器

Patricia Gonzalez-Guerrero, Kylie Huch, N. Patra, Thom Popovici, George Michelogiannakis
{"title":"区域高效超导一元CNN加速器","authors":"Patricia Gonzalez-Guerrero, Kylie Huch, N. Patra, Thom Popovici, George Michelogiannakis","doi":"10.1109/ISQED57927.2023.10129299","DOIUrl":null,"url":null,"abstract":"In superconducting circuits, information is carried by ps-wide, µV-tall, Single Flux Quanta (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that addresses these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary (B-SFQ) approaches in 32× less area. CNNs can operate with 5 to 8 bits of resolution with no significant degradation in classification accuracy. The proposed CNN accelerator effortlessly supports this variable resolution and, for less than 7 bits, yields 5×-63× better performance than CMOS and 15×-173× better area efficiency than B-SFQ.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Area Efficient Superconducting Unary CNN Accelerator\",\"authors\":\"Patricia Gonzalez-Guerrero, Kylie Huch, N. Patra, Thom Popovici, George Michelogiannakis\",\"doi\":\"10.1109/ISQED57927.2023.10129299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In superconducting circuits, information is carried by ps-wide, µV-tall, Single Flux Quanta (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that addresses these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary (B-SFQ) approaches in 32× less area. CNNs can operate with 5 to 8 bits of resolution with no significant degradation in classification accuracy. The proposed CNN accelerator effortlessly supports this variable resolution and, for less than 7 bits, yields 5×-63× better performance than CMOS and 15×-173× better area efficiency than B-SFQ.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在超导电路中,信息由ps宽、µv高、单通量量子(SFQ)脉冲携带。这些电路可以在数百千兆赫的频率下工作,开关能量比互补金属氧化物半导体(CMOS)低几个数量级。然而,在现代超导体技术严格的面积限制下,完全成熟的、cmos启发的超导体系结构无法大规模制造。一元SFQ (U-SFQ)是解决这些区域限制的另一种计算范式。在U-SFQ中,信息被映射到SFQ脉冲流和时域的组合。在这项工作中,我们提出了一种U-SFQ卷积神经网络(CNN)硬件加速器,能够在32x less区域内与最先进的超导二进制(B-SFQ)方法具有相当的峰值性能。cnn可以在5到8位的分辨率下运行,分类精度没有明显下降。提出的CNN加速器毫不费力地支持这种可变分辨率,并且在小于7位的情况下,产生5×-63×比CMOS更好的性能和15×-173×比B-SFQ更好的面积效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Area Efficient Superconducting Unary CNN Accelerator
In superconducting circuits, information is carried by ps-wide, µV-tall, Single Flux Quanta (SFQ) pulses. These circuits can operate at frequencies of hundreds of GHz with orders of magnitude lower switching energy than complementary-metal-oxide-semiconductors (CMOS). However, under the stringent area constraints of modern superconductor technologies, fully-fledged, CMOS-inspired superconducting architectures cannot be fabricated at large scales. Unary SFQ (U-SFQ) is an alternative computing paradigm that addresses these area constraints. In U-SFQ, information is mapped to a combination of streams of SFQ pulses and in the temporal domain. In this work, we propose a U-SFQ Convolutional Neural Network (CNN) hardware accelerator capable of comparable peak performance with state-of-the-art superconducting binary (B-SFQ) approaches in 32× less area. CNNs can operate with 5 to 8 bits of resolution with no significant degradation in classification accuracy. The proposed CNN accelerator effortlessly supports this variable resolution and, for less than 7 bits, yields 5×-63× better performance than CMOS and 15×-173× better area efficiency than B-SFQ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Metal Inter-layer Via Keep-out-zone in M3D IC: A Critical Process-aware Design Consideration HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs A Novel Stochastic LSTM Model Inspired by Quantum Machine Learning DC-Model: A New Method for Assisting the Analog Circuit Optimization Polynomial Formal Verification of a Processor: A RISC-V Case Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1