{"title":"最大熵语言模型的高效表示和快速查找","authors":"Jia Cui, Stanley F. Chen, Bowen Zhou","doi":"10.1109/ASRU.2011.6163936","DOIUrl":null,"url":null,"abstract":"Word class information has long been proven useful in language modeling (LM). However, the improved performance of class-based LMs over word n-gram models generally comes at the cost of increased decoding complexity and model size. In this paper, we propose a modified version of the Maximum Entropy token-based language model of [1] that matches the performance of the best existing class-based models, but which is as fast for decoding as a word n-gram model. In addition, while it is easy to statically combine word n-gram models built on different corpora into a single word n-gram model for fast decoding, it is unknown how to statically combine class-based LMs effectively. Another contribution of this paper is to propose a novel combination method that retains the gain of class-based LMs over word n-gram models. Experimental results on several spoken language translation tasks show that our model performs significantly better than word n-gram models with comparable decoding speed and only a modest increase in model size.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient representation and fast look-up of Maximum Entropy language models\",\"authors\":\"Jia Cui, Stanley F. Chen, Bowen Zhou\",\"doi\":\"10.1109/ASRU.2011.6163936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word class information has long been proven useful in language modeling (LM). However, the improved performance of class-based LMs over word n-gram models generally comes at the cost of increased decoding complexity and model size. In this paper, we propose a modified version of the Maximum Entropy token-based language model of [1] that matches the performance of the best existing class-based models, but which is as fast for decoding as a word n-gram model. In addition, while it is easy to statically combine word n-gram models built on different corpora into a single word n-gram model for fast decoding, it is unknown how to statically combine class-based LMs effectively. Another contribution of this paper is to propose a novel combination method that retains the gain of class-based LMs over word n-gram models. Experimental results on several spoken language translation tasks show that our model performs significantly better than word n-gram models with comparable decoding speed and only a modest increase in model size.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient representation and fast look-up of Maximum Entropy language models
Word class information has long been proven useful in language modeling (LM). However, the improved performance of class-based LMs over word n-gram models generally comes at the cost of increased decoding complexity and model size. In this paper, we propose a modified version of the Maximum Entropy token-based language model of [1] that matches the performance of the best existing class-based models, but which is as fast for decoding as a word n-gram model. In addition, while it is easy to statically combine word n-gram models built on different corpora into a single word n-gram model for fast decoding, it is unknown how to statically combine class-based LMs effectively. Another contribution of this paper is to propose a novel combination method that retains the gain of class-based LMs over word n-gram models. Experimental results on several spoken language translation tasks show that our model performs significantly better than word n-gram models with comparable decoding speed and only a modest increase in model size.