汉语大词汇量连续语音识别的词错最小化方法实证研究

Jen-wei Kuo, Shih-Hung Liu, H. Wang, Berlin Chen
{"title":"汉语大词汇量连续语音识别的词错最小化方法实证研究","authors":"Jen-wei Kuo, Shih-Hung Liu, H. Wang, Berlin Chen","doi":"10.30019/IJCLCLP.200609.0002","DOIUrl":null,"url":null,"abstract":"This paper presents an empirical study of word error minimization approaches for Mandarin large vocabulary continuous speech recognition (LVCSR). First, the minimum phone error (MPE) criterion, which is one of the most popular discriminative training criteria, is extensively investigated for both acoustic model training and adaptation in a Mandarin LVCSR system. Second, the word error minimization (WEM) criterion, used to rescore N-best word strings, is appropriately modified for a Mandarin LVCSR system. Finally, a series of speech recognition experiments is conducted on the MATBN Mandarin Chinese broadcast news corpus. The experiment results demonstrate that the MPE training approach reduces the character error rate (CER) by 12% for a system initially trained with the maximum likelihood (ML) approach. Meanwhile, for unsupervised acoustic model adaptation, MPE-based linear regression (MPELR) adaptation outperforms conventional maximum likelihood linear regression (MLLR) in terms of CER reduction. When the WEM decoding approach is used for N-best rescoring, a slight performance gain over the conventional maximum a posteriori (MAP) decoding method is also observed.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Empirical Study of Word Error Minimization Approaches for Mandarin Large Vocabulary Continuous Speech Recognition\",\"authors\":\"Jen-wei Kuo, Shih-Hung Liu, H. Wang, Berlin Chen\",\"doi\":\"10.30019/IJCLCLP.200609.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an empirical study of word error minimization approaches for Mandarin large vocabulary continuous speech recognition (LVCSR). First, the minimum phone error (MPE) criterion, which is one of the most popular discriminative training criteria, is extensively investigated for both acoustic model training and adaptation in a Mandarin LVCSR system. Second, the word error minimization (WEM) criterion, used to rescore N-best word strings, is appropriately modified for a Mandarin LVCSR system. Finally, a series of speech recognition experiments is conducted on the MATBN Mandarin Chinese broadcast news corpus. The experiment results demonstrate that the MPE training approach reduces the character error rate (CER) by 12% for a system initially trained with the maximum likelihood (ML) approach. Meanwhile, for unsupervised acoustic model adaptation, MPE-based linear regression (MPELR) adaptation outperforms conventional maximum likelihood linear regression (MLLR) in terms of CER reduction. When the WEM decoding approach is used for N-best rescoring, a slight performance gain over the conventional maximum a posteriori (MAP) decoding method is also observed.\",\"PeriodicalId\":436300,\"journal\":{\"name\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Linguistics Chin. Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30019/IJCLCLP.200609.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200609.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对汉语大词汇量连续语音识别中的单词误差最小化方法进行了实证研究。首先,研究了基于最小电话误差(MPE)准则的中文LVCSR系统声学模型训练和自适应问题。其次,针对中文LVCSR系统,对用于重选n个最佳字串的单词误差最小化(WEM)准则进行了适当修改。最后,在MATBN普通话广播新闻语料库上进行了一系列的语音识别实验。实验结果表明,对于最初使用最大似然(ML)方法训练的系统,MPE训练方法将字符错误率(CER)降低了12%。同时,对于无监督声学模型自适应,基于mpe的线性回归(MPELR)自适应在CER降低方面优于传统的最大似然线性回归(MLLR)。当使用WEM解码方法进行N-best评分时,还观察到比传统的最大后验(MAP)解码方法有轻微的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Empirical Study of Word Error Minimization Approaches for Mandarin Large Vocabulary Continuous Speech Recognition
This paper presents an empirical study of word error minimization approaches for Mandarin large vocabulary continuous speech recognition (LVCSR). First, the minimum phone error (MPE) criterion, which is one of the most popular discriminative training criteria, is extensively investigated for both acoustic model training and adaptation in a Mandarin LVCSR system. Second, the word error minimization (WEM) criterion, used to rescore N-best word strings, is appropriately modified for a Mandarin LVCSR system. Finally, a series of speech recognition experiments is conducted on the MATBN Mandarin Chinese broadcast news corpus. The experiment results demonstrate that the MPE training approach reduces the character error rate (CER) by 12% for a system initially trained with the maximum likelihood (ML) approach. Meanwhile, for unsupervised acoustic model adaptation, MPE-based linear regression (MPELR) adaptation outperforms conventional maximum likelihood linear regression (MLLR) in terms of CER reduction. When the WEM decoding approach is used for N-best rescoring, a slight performance gain over the conventional maximum a posteriori (MAP) decoding method is also observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1