Y. Kodama, M. Yanagisawa, K. Shigenobu, T. Suzuki, H. Mochizuki, T. Ema
{"title":"一个150-mhz 4-bank 64m-bit Sdram与地址递增管道方案","authors":"Y. Kodama, M. Yanagisawa, K. Shigenobu, T. Suzuki, H. Mochizuki, T. Ema","doi":"10.1109/VLSIC.1994.586226","DOIUrl":null,"url":null,"abstract":"We developed a 150-MHz 64M-bit SDRAM with an address incrementing pipeline scheme. For a synchronous read/write operation, we divided the column access path into three pipeline stages [l]. To increase the operating speed, we developed an address incrementing pipeline scheme, which can concurrently access data at two consecutive addresses. Using this scheme, the area penalty is 1.5% more than that of the conventional DRAM. For high frequency signals, we used T","PeriodicalId":350730,"journal":{"name":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A 150-mhz 4-bank 64m-bit Sdram With Address Incrementing Pipeline Scheme\",\"authors\":\"Y. Kodama, M. Yanagisawa, K. Shigenobu, T. Suzuki, H. Mochizuki, T. Ema\",\"doi\":\"10.1109/VLSIC.1994.586226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a 150-MHz 64M-bit SDRAM with an address incrementing pipeline scheme. For a synchronous read/write operation, we divided the column access path into three pipeline stages [l]. To increase the operating speed, we developed an address incrementing pipeline scheme, which can concurrently access data at two consecutive addresses. Using this scheme, the area penalty is 1.5% more than that of the conventional DRAM. For high frequency signals, we used T\",\"PeriodicalId\":350730,\"journal\":{\"name\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.1994.586226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1994.586226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 150-mhz 4-bank 64m-bit Sdram With Address Incrementing Pipeline Scheme
We developed a 150-MHz 64M-bit SDRAM with an address incrementing pipeline scheme. For a synchronous read/write operation, we divided the column access path into three pipeline stages [l]. To increase the operating speed, we developed an address incrementing pipeline scheme, which can concurrently access data at two consecutive addresses. Using this scheme, the area penalty is 1.5% more than that of the conventional DRAM. For high frequency signals, we used T