燃气轮机结垢:气候和部分负荷工况的影响

Nicola Aldi, N. Casari, Mirko Morini, M. Pinelli, P. R. Spina, A. Suman, Alessandro Vulpio
{"title":"燃气轮机结垢:气候和部分负荷工况的影响","authors":"Nicola Aldi, N. Casari, Mirko Morini, M. Pinelli, P. R. Spina, A. Suman, Alessandro Vulpio","doi":"10.1115/gt2019-91748","DOIUrl":null,"url":null,"abstract":"\n Energy and climate change policies associated with the continuous increase in natural gas costs pushed governments to invest in renewable energy and alternative fuels. In this perspective, the idea to convert gas turbines from natural gas to syngas from biomass gasification could be a suitable choice. Biogas is a valid alternative to natural gas because of its low costs, high availability and low environmental impact. Syngas is produced with the gasification of plant and animal wastes and then burnt in gas turbine combustor. Although synfuels are cleaned and filtered before entering the turbine combustor, impurities are not completely removed. Therefore, the high temperature reached in the turbine nozzle can lead to the deposition of contaminants onto internal surfaces. This phenomenon leads to the degradation of the hot parts of the gas turbine and consequently to the loss of performance. The amount of the deposited particles depends on mass flow rate, composition and ash content of the fuel and on turbine inlet temperature (TIT). Furthermore, compressor fouling plays a major role in the degradation of the gas turbine. In fact, particles that pass through the inlet filters, enter the compressor and could deposit on the airfoil.\n In this paper, the comparison between five (5) heavy-duty gas turbines is presented. The five machines cover an electrical power range from 1 MW to 10 MW. Every model has been simulated in six different climate zones and with four different synfuels. The combination of turbine fouling, compressor fouling, and environmental conditions is presented to show how these parameters can affect the performance and degradation of the machines. The results related to environmental influence are shown quantitatively, while those connected to turbine and compressor fouling are reported in a more qualitative manner.\n Particular attention is given also to part-load conditions. The power units are simulated in two different operating conditions: 100 % and 80 % of power rate. The influence of this variation on the intensity of fouling is also reported.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas Turbine Fouling: The Influence of Climate and Part-Load Operating Conditions\",\"authors\":\"Nicola Aldi, N. Casari, Mirko Morini, M. Pinelli, P. R. Spina, A. Suman, Alessandro Vulpio\",\"doi\":\"10.1115/gt2019-91748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Energy and climate change policies associated with the continuous increase in natural gas costs pushed governments to invest in renewable energy and alternative fuels. In this perspective, the idea to convert gas turbines from natural gas to syngas from biomass gasification could be a suitable choice. Biogas is a valid alternative to natural gas because of its low costs, high availability and low environmental impact. Syngas is produced with the gasification of plant and animal wastes and then burnt in gas turbine combustor. Although synfuels are cleaned and filtered before entering the turbine combustor, impurities are not completely removed. Therefore, the high temperature reached in the turbine nozzle can lead to the deposition of contaminants onto internal surfaces. This phenomenon leads to the degradation of the hot parts of the gas turbine and consequently to the loss of performance. The amount of the deposited particles depends on mass flow rate, composition and ash content of the fuel and on turbine inlet temperature (TIT). Furthermore, compressor fouling plays a major role in the degradation of the gas turbine. In fact, particles that pass through the inlet filters, enter the compressor and could deposit on the airfoil.\\n In this paper, the comparison between five (5) heavy-duty gas turbines is presented. The five machines cover an electrical power range from 1 MW to 10 MW. Every model has been simulated in six different climate zones and with four different synfuels. The combination of turbine fouling, compressor fouling, and environmental conditions is presented to show how these parameters can affect the performance and degradation of the machines. The results related to environmental influence are shown quantitatively, while those connected to turbine and compressor fouling are reported in a more qualitative manner.\\n Particular attention is given also to part-load conditions. The power units are simulated in two different operating conditions: 100 % and 80 % of power rate. The influence of this variation on the intensity of fouling is also reported.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2019-91748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与天然气成本持续上涨相关的能源和气候变化政策促使各国政府投资可再生能源和替代燃料。从这个角度来看,将燃气轮机从天然气转换为生物质气化合成气的想法可能是一个合适的选择。沼气因其低成本、高可用性和低环境影响而成为天然气的有效替代品。合成气是将动植物废物气化后在燃气轮机燃烧器中燃烧而产生的。虽然合成燃料在进入涡轮燃烧室之前经过清洗和过滤,但杂质并没有完全去除。因此,涡轮喷嘴内达到的高温会导致污染物沉积到内部表面。这种现象导致燃气轮机热部件的退化,从而导致性能的损失。沉积颗粒的数量取决于燃料的质量流量、成分和灰分含量以及涡轮入口温度。此外,压缩机污垢在燃气轮机的退化中起着重要作用。事实上,颗粒通过进口过滤器,进入压缩机,并可能沉积在翼型。本文对五种重型燃气轮机进行了比较。这五台机器的功率范围从1兆瓦到10兆瓦。每个模型都在六个不同的气候带和四种不同的合成燃料中进行了模拟。结合涡轮污垢、压缩机污垢和环境条件,展示了这些参数如何影响机器的性能和退化。与环境影响相关的结果以定量的方式显示,而与涡轮和压缩机污垢有关的结果则以更定性的方式报告。还特别注意部分负荷条件。对功率单元进行了100%和80%两种不同工况的仿真。还报道了这种变化对结垢强度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gas Turbine Fouling: The Influence of Climate and Part-Load Operating Conditions
Energy and climate change policies associated with the continuous increase in natural gas costs pushed governments to invest in renewable energy and alternative fuels. In this perspective, the idea to convert gas turbines from natural gas to syngas from biomass gasification could be a suitable choice. Biogas is a valid alternative to natural gas because of its low costs, high availability and low environmental impact. Syngas is produced with the gasification of plant and animal wastes and then burnt in gas turbine combustor. Although synfuels are cleaned and filtered before entering the turbine combustor, impurities are not completely removed. Therefore, the high temperature reached in the turbine nozzle can lead to the deposition of contaminants onto internal surfaces. This phenomenon leads to the degradation of the hot parts of the gas turbine and consequently to the loss of performance. The amount of the deposited particles depends on mass flow rate, composition and ash content of the fuel and on turbine inlet temperature (TIT). Furthermore, compressor fouling plays a major role in the degradation of the gas turbine. In fact, particles that pass through the inlet filters, enter the compressor and could deposit on the airfoil. In this paper, the comparison between five (5) heavy-duty gas turbines is presented. The five machines cover an electrical power range from 1 MW to 10 MW. Every model has been simulated in six different climate zones and with four different synfuels. The combination of turbine fouling, compressor fouling, and environmental conditions is presented to show how these parameters can affect the performance and degradation of the machines. The results related to environmental influence are shown quantitatively, while those connected to turbine and compressor fouling are reported in a more qualitative manner. Particular attention is given also to part-load conditions. The power units are simulated in two different operating conditions: 100 % and 80 % of power rate. The influence of this variation on the intensity of fouling is also reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1